ON THE TWO-DIMENSIONAL VERSION OF THE SPERNER LEMMA AND BROUWER'S THEOREM

被引:0
|
作者
Barcz, Eugeniusz [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Chair Complex Anal, Sloneczna 54 St, PL-10710 Olsztyn, Poland
关键词
Sperner's Lemma; Brouwer's theorem; retraction; fixed-point property;
D O I
10.2478/amsil-2022-0012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work the Brouwer fixed point theorem for a triangle was proved by two methods based on the Sperner Lemma. One of the two proofs of Sperner's Lemma given in the paper was carried out using the so-called index.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [21] Extensions of Sperner and Tucker's lemma for manifolds
    Musin, Oleg R.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 132 : 172 - 187
  • [22] Using volume to prove Sperner’s Lemma
    Andrew McLennan
    Rabee Tourky
    Economic Theory, 2008, 35 : 593 - 597
  • [23] Infinite Sperner's theorem
    Sudakov, Benny
    Tomon, Istvan
    Wagner, Adam Zsolt
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 187
  • [24] An application of Sperner's Theorem
    Kearnes, KA
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (04): : 374 - 374
  • [25] A direct proof of the equivalence between Brouwer's fan theorem and Konig's lemma with a uniqueness hypothesis
    Schwichtenberg, H
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2005, 11 (12) : 2086 - 2095
  • [26] THE WEAK KONIG LEMMA, BROUWER'S FAN THEOREM, DE MORGAN'S LAW, AND DEPENDENT CHOICE
    Berger, Josef
    Ishihara, Hajime
    Schuster, Peter
    REPORTS ON MATHEMATICAL LOGIC, 2012, 47 : 63 - 86
  • [27] An Extension of the Equivalence Between Brouwer's Fan Theorem and Weak Konig's Lemma with a Uniqueness Hypothesis
    Fujiwara, Makoto
    REVOLUTIONS AND REVELATIONS IN COMPUTABILITY, CIE 2022, 2022, 13359 : 115 - 124
  • [28] On the black-box complexity of Sperner's lemma
    Friedl, K
    Ivanyos, G
    Santha, M
    Verhoeven, YF
    FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 245 - 257
  • [29] A Direct Proof of the Gale–Nikaido–Debreu Lemma Using Sperner’s Lemma
    Thanh Le
    Cuong Le Van
    Ngoc-Sang Pham
    Cagri Saglam
    Journal of Optimization Theory and Applications, 2022, 194 : 1072 - 1080
  • [30] Using oriented volume to prove Sperner’s lemma
    Yakar Kannai
    Economic Theory Bulletin, 2013, 1 (1) : 11 - 19