Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity

被引:11
|
作者
Li, Chenchen [1 ]
Zhou, Bangze [1 ]
Zhou, Yanfen [1 ]
Ma, Jianwei [1 ]
Zhou, Fenglei [1 ,2 ]
Chen, Shaojuan [1 ]
Jerrams, Stephen [3 ]
Jiang, Liang [1 ]
机构
[1] Qingdao Univ, Coll Text & Clothing, Qingdao 266071, Peoples R China
[2] UCL, Dept Med Phys & Biomed Engn, London WC1V 6LJ, England
[3] Technol Univ Dublin TUD, Focas Res Inst, City Campus,Kevin St, Dublin D08 NF82, Ireland
基金
中国国家自然科学基金;
关键词
fibrous tubes; strain sensor; working range; linearity; FIBER;
D O I
10.3390/nano12142458
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Strain sensors are currently limited by an inability to operate over large deformations or to exhibit linear responses to strain. Producing strain sensors meeting these criteria remains a particularly difficult challenge. In this work, the fabrication of a highly flexible strain sensor based on electrospun thermoplastic polyurethane (TPU) fibrous tubes comprising wavy and oriented fibers coated with carboxylated multiwall carbon nanotubes (CNTs) is described. By combining spraying and ultrasonic-assisted deposition, the number of CNTs deposited on the electrospun TPU fibrous tube could reach 12 wt%, which can potentially lead to the formation of an excellent conductive network with high conductivity of 0.01 S/cm. The as-prepared strain sensors exhibited a wide strain sensing range of 0-760% and importantly high linearity over the whole sensing range while maintaining high sensitivity with a GF of 57. Moreover, the strain sensors were capable of detecting a low strain (2%) and achieved a fast response time whilst retaining a high level of durability. The TPU/CNTs fibrous tube-based strain sensors were found capable of accurately monitoring both large and small human body motions. Additionally, the strain sensors exhibited rapid response time, (e.g., 45 ms) combined with reliable long-term stability and durability when subjected to 60 min of water washing. The strain sensors developed in this research had the ability to detect large and subtle human motions, (e.g., bending of the finger, wrist, and knee, and swallowing). Consequently, this work provides an effective method for designing and manufacturing high-performance fiber-based wearable strain sensors, which offer wide strain sensing ranges and high linearity over broad working strain ranges.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Carbon nanotube yarn strain sensors
    Zhao, Haibo
    Zhang, Yingying
    Bradford, Philip D.
    Zhou, Qian
    Jia, Quanxi
    Yuan, Fuh-Gwo
    Zhu, Yuntian
    NANOTECHNOLOGY, 2010, 21 (30)
  • [32] Ultrasensitive piezoresistive strain sensors based on CNTs/Ag-NPs coated highly stretchable textile
    Muhammad Altaf
    Bushra Rehman
    Ayesha Rehman
    Nazmina Imrose Sonil
    Shahid Atiq
    Saira Riaz
    Shahzad Naseem
    Zaka Ullah
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 9870 - 9877
  • [33] Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites
    Gao, Yang
    Fang, Xiaoliang
    Tan, Jianping
    Lu, Ting
    Pan, Likun
    Xuan, Fuzhen
    NANOTECHNOLOGY, 2018, 29 (23)
  • [34] Highly stretchable and conductiveMXene/polyurethane composite film coated on various flexible substrates for ultrasensitive strain sensors
    Fu, Wenle
    Wang, Qi
    Liu, Hao
    Cao, Junming
    Xu, Jiyu
    Yuan, Xueguang
    Zhang, Yang'an
    Ren, Xiaomin
    MATERIALS LETTERS, 2022, 320
  • [35] Ultrasensitive piezoresistive strain sensors based on CNTs/Ag-NPs coated highly stretchable textile
    Altaf, Muhammad
    Rehman, Bushra
    Rehman, Ayesha
    Sonil, Nazmina Imrose
    Atiq, Shahid
    Riaz, Saira
    Naseem, Shahzad
    Ullah, Zaka
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (12) : 9870 - 9877
  • [36] High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes
    Deng, Caihao
    Lan, Linfeng
    He, Penghui
    Ding, Chunchun
    Chen, Baozhong
    Zheng, Wei
    Zhao, Xin
    Chen, Wangshou
    Zhong, Xizhou
    Li, Min
    Tao, Hong
    Peng, Junbiao
    Cao, Yong
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (16) : 5541 - 5546
  • [37] Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors
    Zhu, Sailing
    Sun, Haoyu
    Lu, Ya
    Wang, Shaolin
    Yue, Yiying
    Xu, Xinwu
    Mei, Changtong
    Xiao, Huining
    Fu, Qiliang
    Han, Jingquan
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (49) : 59142 - 59153
  • [38] Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites
    Zhang, Shangjie
    Zhang, Hulin
    Yao, Guang
    Liao, Feiyi
    Gao, Min
    Huang, Zhenlong
    Li, Kunyang
    Lin, Yuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 652 : 48 - 54
  • [39] A highly stretchable carbon nanotube/reduced graphene oxide/poly (dimethylsiloxane) composite with high thermal conductivity as a flexible strain sensor
    Meng, Jiajia
    Song, Jianan
    Zhang, Xi
    Wang, Jiaqi
    Li, Songjun
    COMPOSITES COMMUNICATIONS, 2023, 42
  • [40] Highly stretchable ionic conducting hydrogels for strain/tactile sensors
    Li, Ren'ai
    Zhang, Kaili
    Cai, Ling
    Chen, Guangxue
    He, Minghui
    POLYMER, 2019, 167 : 154 - 158