On the renormalization of topological Yang-Mills field theory in N=1 superspace

被引:1
|
作者
deOliveira, MW
Firme, ABP
机构
[1] Ctro. Brasileiro Pesq. Fis. (CBPF), Depto. de Campos e Particulas (DCP), 150 CEP 22290-180 Urca, R.J., Rua Dr. Xavier Sigaud
关键词
D O I
10.1016/0550-3213(96)00375-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the renormalization aspects of topological super-Yang-Mills field theory in N = 1 superspace. Our approach makes use of the regularization-independent BRS algebraic technique adapted to the case of an N = 1 supersymmetric model. We give the expression of the most general local counterterm to the classical action to all orders of the perturbative expansion. The counterterm is shown to be a BRS coboundary, implying that the cohomological properties of the supertopological theory are not affected by quantum effects. We also demonstrate the vanishing of the Callan-Symanzik beta-function of the model by employing a recently discovered supersymmetric antighost Ward identity.
引用
收藏
页码:925 / 937
页数:13
相关论文
共 50 条
  • [21] Superspace gauge fixing of topological Yang-Mills theories
    Constantinidis, CP
    Piguet, O
    Spalenza, W
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2004, 33 (03): : 443 - 456
  • [22] Superspace gauge fixing of topological Yang-Mills theories
    Clisthenis P. Constantinidis
    Olivier Piguet
    Wesley Spalenza
    [J]. The European Physical Journal C - Particles and Fields, 2004, 33 : 443 - 456
  • [23] A superspace formulation of Yang-Mills theory on sphere
    Banerjee, Rabin
    Deguchi, Shinichi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [24] RENORMALIZATION AND TOPOLOGICAL SUSCEPTIBILITY ON THE LATTICE - SU(2) YANG-MILLS THEORY
    ALLES, B
    CAMPOSTRINI, M
    DIGIACOMO, A
    GUNDUC, Y
    VICARI, E
    [J]. PHYSICAL REVIEW D, 1993, 48 (05): : 2284 - 2289
  • [25] Algebraic renormalization of Yang-Mills theory with background field method
    Grassi, P. A.
    [J]. Nuclear Physics, Section B, 462 (2-3):
  • [26] Algebraic renormalization of Yang-Mills theory with background field method
    Grassi, PA
    [J]. NUCLEAR PHYSICS B, 1996, 462 (2-3) : 524 - 550
  • [27] AN EXTENDED TOPOLOGICAL YANG-MILLS THEORY
    DEGUCHI, S
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 57 - 69
  • [28] AN INTRODUCTION TO TOPOLOGICAL YANG-MILLS THEORY
    VANBAAL, P
    [J]. ACTA PHYSICA POLONICA B, 1990, 21 (02): : 73 - 99
  • [29] QUANTIZATION OF THE TOPOLOGICAL YANG-MILLS THEORY
    DAHMEN, HD
    MARCULESCU, S
    SZYMANOWSKI, L
    [J]. PHYSICS LETTERS B, 1990, 252 (04) : 591 - 595
  • [30] TOPOLOGICAL ASPECTS OF YANG-MILLS THEORY
    ATIYAH, MF
    JONES, JDS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (02) : 97 - 118