CFD MODELLING OF DUST EXPLOSIONS: RAPID COMBUSTION IN A 20 L APPARATUS

被引:8
|
作者
Bind, Vimlesh Kumar [1 ,2 ]
Roy, Shantanu [1 ]
Rajagopal, Chitra [2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, New Delhi 110016, India
[2] Def Res & Dev Org, Ctr Fire Explos & Environm Safety, Delhi 110054, India
来源
CANADIAN JOURNAL OF CHEMICAL ENGINEERING | 2011年 / 89卷 / 04期
关键词
dust explosion; CFD modelling; CFD of dust explosions; Al dust explosion; INTER-COMPARISON EXERCISE; CAPABILITIES; HYDROGEN; DESC;
D O I
10.1002/cjce.20419
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Dust explosions are combustion of fine dust particles in a rapid reaction regime. They are of relatively common occurrence in industries which have unit operations like grinding, pneumatic conveying, drying, and fine particle collection: generally those units which handle fine particles or "dust" in an oxygen-rich environment. At present, mitigation and prevention of dust explosion accidents is largely based on operator experience and safety inspection heuristics: knowledge that often cannot be documented or put into scientifically developed safety rules. Part reason for this state of affairs is our lack of fundamental understanding on how a dust explosion progresses after ignition of the dust cloud. In this contribution, with a view towards improving our understanding of dust explosions, we propose a multi-scale modelling approach for modelling dust explosion phenomena in a standard 20 L Siwek Apparatus. The modelling approach is based on computational fluid dynamics methods treating Aluminum dust cloud as a quasi-homogeneous phase.
引用
收藏
页码:663 / 670
页数:8
相关论文
共 50 条
  • [31] Combustion behaviors and residues characteristics in hydrogen/aluminum dust hybrid explosions
    Yu, Xiaozhe
    Yu, Jianliang
    Zhang, Xinyan
    Ji, Wentao
    Lv, Xianshu
    Hou, Yujie
    Li, Zhiyong
    Yan, Xingqing
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 134 : 343 - 352
  • [32] Dust modelling using a combined CFD and discrete elementformulation
    Hilton, J. E.
    Cleary, P. W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (05) : 528 - 549
  • [33] Experimental and thermodynamic study of aerosol explosions in a 36 L apparatus
    Yuan, Shuai
    Ji, Chenxi
    Monhollen, Andrew
    Kwon, Joseph Sang-Il
    Mashuga, Chad
    FUEL, 2019, 245 : 467 - 477
  • [34] CFD simulation of the carbon dust combustion in the COREX® melter gasifier
    Berger, K.
    Weiss, Ch.
    Kepplinger, W. L.
    STEEL RESEARCH INTERNATIONAL, 2008, 79 (08) : 579 - 585
  • [35] Experimental Study and Modelling of the Pyrolysis of Organic Dusts: Application to Dust Explosions
    Cuervo, Nicolas
    Dufaud, Olivier
    Torrado, David
    Bardin-Monnier, Nathalie
    Perrin, Laurent
    Laurent, Andre
    LP2013 - 14TH SYMPOSIUM ON LOSS PREVENTION AND SAFETY PROMOTION IN THE PROCESS INDUSTRIES, VOLS I AND II, 2013, 31 : 931 - 936
  • [36] CFD modelling of air and oxy-coal combustion
    Stechzy, Katarzyna
    Wecel, Gabriel
    Ingham, Derek B.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (04) : 825 - 844
  • [37] Micro gas turbine combustion chamber CFD modelling
    Mangra, A. C.
    MODTECH INTERNATIONAL CONFERENCE - MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING VIII, 2020, 916
  • [38] Special issue: CFD modelling of biomass combustion systems
    Obernberger, Ingwald
    Scharler, Robert
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2006, 6 (4-5): : 187 - 187
  • [39] Laboratory Scaled Coal Dust Explosions and Physical Test Results for CFD Explosion Models
    Kohlenstaubexplosionen im Labormaßstab und physikalische Ergebnisse für CFD-Modelle
    Hartlieb, Philipp (Philipp.hartlieb@unileoben.ac.at), 2020, Springer (165): : 265 - 269
  • [40] CFD modelling of gas explosions: Optimising sub-grid model parameters
    Both, A. -L.
    Atanga, G.
    Hisken, H.
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2019, 60 : 159 - 173