Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation

被引:88
|
作者
Han, Shaobo [1 ,2 ,5 ]
Ruoko, Tero-Petri [1 ]
Gladisch, Johannes [1 ,2 ]
Erlandsson, Johan [3 ]
Wagberg, Lars [3 ,4 ]
Crispin, Xavier [1 ,2 ]
Fabiano, Simone [1 ,2 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrkoping, Sweden
[2] Linkoping Univ, Wallenberg Wood Sci Ctr, SE-60174 Norrkoping, Sweden
[3] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Teknikringen 56, S-10044 Stockholm, Sweden
[4] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Wallenberg Wood Sci Ctr, Teknikringen 56, S-10044 Stockholm, Sweden
[5] Wuyi Univ, Sch Text Mat & Engn, 22 Dongchengcun, Jiangmen 529020, Peoples R China
基金
瑞典研究理事会;
关键词
cellulose aerogels; freeze-drying; PEDOT; PSS; solar steam generation; water purification; FILM; EVAPORATION; MEMBRANES; SALINITY; PEDOT;
D O I
10.1002/adsu.202000004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seawater desalination and wastewater purification technologies are the main strategies against the global fresh water shortage. Among these technologies, solar-driven evaporation is effective in extracting fresh water by efficiently exploiting solar energy. However, building a sustainable and low-cost solar steam generator with high conversion efficiency is still a challenge. Here, pure organic aerogels comprising a cellulose scaffold decorated with an organic conducting polymer absorbing in the infrared are employed to establish a high performance solar steam generator. The low density of the aerogel ensures minimal material requirements, while simultaneously satisfying efficient water transport. To localize the absorbed solar energy and make the system floatable, a porous floating and thermal-insulating foam is placed between the water and the aerogel. Thanks to the high absorbance of the aerogel and the thermal-localization performance of the foam, the system exhibits a high water evaporation rate of 1.61 kg m(-2) h(-1) at 1 kW m(-2) under 1 sun irradiation, which is higher than most reported solar steam generation devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Highly Flexible and Efficient Solar Steam Generation Device
    Chen, Chaoji
    Li, Yiju
    Song, Jianwei
    Yang, Zhi
    Kuang, Yudi
    Hitz, Emily
    Jia, Chao
    Gong, Amy
    Jiang, Feng
    Zhu, J. Y.
    Yang, Bao
    Xie, Jia
    Hu, Liangbing
    ADVANCED MATERIALS, 2017, 29 (30)
  • [32] Nanoporous alloys drive efficient solar steam generation
    Plummer, John
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [33] Bilayered Biofoam for Highly Efficient Solar Steam Generation
    Jiang, Qisheng
    Tian, Limei
    Liu, Keng-Ku
    Tadepalli, Sirimuvva
    Raliya, Ramesh
    Biswas, Pratim
    Naik, Rajesh R.
    Singamaneni, Srikanth
    ADVANCED MATERIALS, 2016, 28 (42) : 9400 - +
  • [34] Photothermal materials for efficient solar powered steam generation
    Fenghua Liu
    Yijian Lai
    Binyuan Zhao
    Robert Bradley
    Weiping Wu
    Frontiers of Chemical Science and Engineering, 2019, 13 : 636 - 653
  • [35] Accelerated solar steam generation for efficient ions removal
    Liu, Changkun
    Cai, Chaojie
    Ma, Fuqing
    Zhao, Xinzhen
    Ahmad, Hilal
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 560 : 103 - 110
  • [36] Photothermal materials for efficient solar powered steam generation
    Liu, Fenghua
    Lai, Yijian
    Zhao, Binyuan
    Bradley, Robert
    Wu, Weiping
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2019, 13 (04) : 636 - 653
  • [37] Carbonized daikon for high efficient solar steam generation
    Zhu, Mengmeng
    Yu, Jialiang
    Ma, Cunlin
    Zhang, Canying
    Wu, Daxiong
    Zhu, Haitao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 191 : 83 - 90
  • [38] Advances and challenges of broadband solar absorbers for efficient solar steam generation
    Liu, Ying
    Zhao, Jian
    Zhang, Siyu
    Li, Dengyu
    Zhang, Xuejiao
    Zhao, Qing
    Xing, Baoshan
    ENVIRONMENTAL SCIENCE-NANO, 2022, 9 (07) : 2264 - 2296
  • [39] Highly efficient solar steam generation of bilayered ultralight aerogels based on N-rich conjugated microporous polymers nanotubes
    Zhu, Zhaoqi
    Mu, Peng
    Fan, Yukang
    Bai, Wei
    Zhang, Zheng
    Sun, Hanxue
    Liang, Weidong
    Li, An
    EUROPEAN POLYMER JOURNAL, 2020, 126
  • [40] Full bagasse bio-waste derived 3D photothermal aerogels for high efficient solar steam generation
    Jun Xiong
    Zhenning Zhang
    Yuhao Liu
    Jie Yi
    Yixin Wang
    Bowen Li
    Weiming Wang
    Shuai Peng
    Xue Min
    Yunyun Gui
    Ming Li
    Junjun Peng
    Cellulose, 2022, 29 : 927 - 939