Deep Learning Model for Object Detection

被引:2
|
作者
Hristeva, T. [1 ]
Marinova, M. [2 ]
Lazarov, V. [3 ]
机构
[1] Tech Univ Sofia, Plovdiv Branch, Plovdiv, Bulgaria
[2] Tech Univ, Sofia, Bulgaria
[3] Bulgarian Acad Sci, Sofia, Bulgaria
关键词
D O I
10.1063/1.5133483
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning is entering in the everyday life of people in different forms. The reasons for this are the continuous development of computer systems, the increase of their computing power and the increase of data stored on electronic media. The main goals of developing self-learning models are to improve or replace existing methods for processing large amounts of information, to improve the services offered by different institutions, and generally to improve and facilitate the lifestyle of modern man. Machine learning can be used to detect complex relationships between a large set of input data, making it an appropriate method for solving a wide range of issues in different spheres such as Bioinformatics, Computer networks, Computer vision, Marketing, Medicine, Natural Language Processing (NLP) and many others.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A comprehensive review of object detection with deep learning
    Kaur, Ravpreet
    Singh, Sarbjeet
    DIGITAL SIGNAL PROCESSING, 2023, 132
  • [32] Optimizing Deep Learning Models for Object Detection
    Barburescu, Calin-George
    Iuhasz, Gabriel
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 270 - 277
  • [33] Secure Object Detection Based on Deep Learning
    Kim, Keonhyeong
    Jung, Im Young
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2021, 17 (03): : 571 - 585
  • [34] A Survey of Deep Learning Based Object Detection
    Cao, Yang
    Jin, Kaijie
    Wang, Yaodong
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 602 - 607
  • [35] Survey of Deep Learning Based Object Detection
    Wang Hechun
    Zheng Xiaohong
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 149 - 153
  • [36] Deep Learning for Generic Object Detection: A Survey
    Liu, Li
    Ouyang, Wanli
    Wang, Xiaogang
    Fieguth, Paul
    Chen, Jie
    Liu, Xinwang
    Pietikainen, Matti
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) : 261 - 318
  • [37] A review of object detection based on deep learning
    Youzi Xiao
    Zhiqiang Tian
    Jiachen Yu
    Yinshu Zhang
    Shuai Liu
    Shaoyi Du
    Xuguang Lan
    Multimedia Tools and Applications, 2020, 79 : 23729 - 23791
  • [38] Federated Object Detection: Optimizing Object Detection Model with Federated Learning
    Yu, Peihua
    Liu, Yunfeng
    ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING, 2019,
  • [39] Hybrid deep learning for object detection in drone imagery: a new metaheuristic based model
    Ajith V S
    Jolly K G
    Multimedia Tools and Applications, 2024, 83 : 8551 - 8589
  • [40] Object Detection Model Based on Deep Dilated Convolutional Networks by Fusing Transfer Learning
    Quan, Yu
    Li, Zhixin
    Zhang, Canlong
    Ma, Huifang
    IEEE ACCESS, 2019, 7 : 178699 - 178709