SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries

被引:157
|
作者
Qiu, Hailong [1 ]
Zhao, Lina [1 ]
Asif, Muhammad [1 ]
Huang, Xiaoxiao [1 ]
Tang, Tianyu [1 ]
Li, Wei [1 ]
Zhang, Teng [1 ]
Shen, Tong [1 ]
Hou, Yanglong [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, BIC ESAT,BKLMMD, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LITHIUM-ION; ELECTROCHEMICAL PERFORMANCE; TIN OXIDE; CAPACITY; COMPOSITES; ELECTRODE; STORAGE; NANOSHEETS; FILMS;
D O I
10.1039/c9ee03682b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (PIBs) are considered as potential replacements to lithium-ion batteries for large scale energy storage applications due to abundant potassium resources and low cost. However, it is a rough road to find suitable materials with high capacity and cycling stability due to the large K ion radius. In this study, a simple method, electrodeposition, is used to anchor SnO2 nanoparticles on three dimensional carbon foam (SnO2@CF) as a freestanding anode for PIBs. The prepared freestanding SnO2@CF electrode features a three dimensional (3D) conductive carbon frame and SnO2 nanoparticles, which can enhance electron transfer, prevent SnO2 from losing electrical contact after large volume changes and facilitate electrolyte infiltration and K ion transfer. As expected, SnO2@CF delivers a high K storage specific capacity, and outstanding cycling stability (231.7 mA h g(-1) after 400 cycles at 1 A g(-1)) and rate performance (371.4, 307.6, 247.3 and 143.5 mA h g(-1) at 0.5, 1, 2 and 5 A g(-1), respectively). Meanwhile, the phase transition of the SnO2@CF electrode is tracked during the charge and discharge processes in PIBs. This study provides a facile method to prepare freestanding electrode materials and a promising anode material for PIBs.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 50 条
  • [21] Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries
    Yang, Shubin
    Song, Huaihe
    Yi, Haixia
    Liu, Wenxiao
    Zhang, Huijuan
    Chen, Xiaohong
    ELECTROCHIMICA ACTA, 2009, 55 (02) : 521 - 527
  • [22] Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries
    Wang, Fei
    Jiao, Hongxing
    He, Erkang
    Yang, Shaoan
    Chen, Yongmei
    Zhao, Mingshu
    Song, Xiaoping
    JOURNAL OF POWER SOURCES, 2016, 326 : 78 - 83
  • [23] An Organic Anode for High Temperature Potassium-Ion Batteries
    Liang, Yujia
    Luo, Chao
    Wang, Fei
    Hou, Singyuk
    Liou, Sz-Chian
    Qing, Tingting
    Li, Qin
    Zheng, Jing
    Cui, Chunyu
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2019, 9 (02)
  • [24] Nitrogen-doped carbon with antimony nanoparticles as a stable anode for potassium-ion batteries
    Ki, Hyeong-Seo
    Nazir, Aqsa
    Le, Hang T. T.
    Song, Geon-Chang
    Kim, Jaekook
    Park, Chan- Jin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
  • [25] Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries
    Cao, Bin
    Zhang, Qing
    Liu, Huan
    Xu, Bin
    Zhang, Shilin
    Zhou, Tengfei
    Mao, Jianfeng
    Pang, Wei Kong
    Guo, Zaiping
    Li, Ang
    Zhou, Jisheng
    Chen, Xiaohong
    Song, Huaihe
    ADVANCED ENERGY MATERIALS, 2018, 8 (25)
  • [26] Dual carbon confining SnO2 nanocrystals as high-performance anode for sodium-ion batteries
    Lin, Chuanjin
    Suo, Guoquan
    Mu, Rongrong
    Zhao, Baoguo
    Li, Jiarong
    Hou, Xiaojiang
    Ye, Xiaohui
    Yang, Yanling
    Zhang, Li
    JOURNAL OF POWER SOURCES, 2024, 623
  • [27] Ultrafine SnO2 nanoparticles anchored in the porous corn straw carbon substrate for high-performance Li-ion batteries application
    Hu, Zhiqing
    Xu, Xinfeng
    Wang, Xiaofeng
    Yu, Kaifeng
    Liang, Ce
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 835
  • [28] Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries
    Yang, Yanling
    Li, Dan
    Zhang, Jiaqi
    Suo, Guoquan
    Yu, Qiyao
    Feng, Lei
    Hou, Xiaojiang
    Ye, Xiaohui
    Zhang, Li
    Wang, Wei
    MATERIALS LETTERS, 2019, 256
  • [29] High Capacity of SnO2 Nanoparticles Decorated Graphene as an Anode for Lithium-Ion Batteries
    Guo, Qi
    Qin, Xue
    ECS SOLID STATE LETTERS, 2013, 2 (06) : M41 - M43
  • [30] SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries
    Chen, Jun Song
    Cheah, Yan Ling
    Chen, Yuan Ting
    Jayaprakash, N.
    Madhavi, Srinivasan
    Yang, Yan Hui
    Lou, Xiong Wen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47): : 20504 - 20508