Graphical Inference for Infovis

被引:76
|
作者
Wickham, Hadley [1 ]
Cook, Dianne [2 ]
Hofmann, Heike [2 ]
Buja, Andreas [3 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] Iowa State Univ, Ames, IA 50011 USA
[3] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Statistics; visual testing; permutation tests; null hypotheses; data plots;
D O I
10.1109/TVCG.2010.161
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
How do we know if what we see is really there? When visualizing data, how do we avoid falling into the trap of apophenia where we see patterns in random noise? Traditionally, infovis has been concerned with discovering new relationships, and statistics with preventing spurious relationships from being reported. We pull these opposing poles closer with two new techniques for rigorous statistical inference of visual discoveries. The "Rorschach" helps the analyst calibrate their understanding of uncertainty and the "line-up" provides a protocol for assessing the significance of visual discoveries, protecting against the discovery of spurious structure.
引用
收藏
页码:973 / 979
页数:7
相关论文
共 50 条
  • [1] COMBINATORIAL INFERENCE FOR GRAPHICAL MODELS
    Neykov, Matey
    Lu, Junwei
    Liu, Han
    ANNALS OF STATISTICS, 2019, 47 (02): : 795 - 827
  • [2] A graphical approach to relatedness inference
    Almudevar, Anthony
    THEORETICAL POPULATION BIOLOGY, 2007, 71 (02) : 213 - 229
  • [3] Diagrammatic inference and graphical proof
    Pineda, LA
    LOGICAL AND COMPUTATIONAL ASPECTS OF MODEL-BASED REASONING, 2002, 25 : 73 - 91
  • [4] GRAPHICAL REPRESENTATION FOR NONPARAMETRIC INFERENCE
    HETTMANSPERGER, TP
    MCKEAN, JW
    AMERICAN STATISTICIAN, 1974, 28 (03): : 100 - 102
  • [5] Graphical Inference in Geographical Research
    Widen, Holly M.
    Elsner, James B.
    Pau, Stephanie
    Uejio, Christopher K.
    GEOGRAPHICAL ANALYSIS, 2016, 48 (02) : 115 - 131
  • [6] The InfoVis Toolkit
    Fekete, JD
    IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, : 167 - 174
  • [7] CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS
    Shpitser, Ilya
    Tchetgen, Eric Tchetgen
    ANNALS OF STATISTICS, 2016, 44 (06): : 2433 - 2466
  • [8] Incremental Inference of Collective Graphical Models
    Singh, Rahul
    Haasler, Isabel
    Zhang, Qinsheng
    Karlsson, Johan
    Chen, Yongxin
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 421 - 426
  • [9] Inference of compressed Potts graphical models
    Rizzato, Francesca
    Coucke, Alice
    de Leonardis, Eleonora
    Barton, John P.
    Tubiana, Jerome
    Monasson, Remi
    Cocco, Simona
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [10] Graphical Causal Models for Survey Inference
    Schuessler, Julian
    Selb, Peter
    SOCIOLOGICAL METHODS & RESEARCH, 2025, 54 (01) : 74 - 105