A Newton-like method for solving rank constrained linear matrix inequalities

被引:15
|
作者
Orsi, R [1 ]
Helmke, U [1 ]
Moore, JB [1 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
关键词
D O I
10.1109/CDC.2004.1428950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a Newton-like algorithm for solving systems of rank constrained linear matrix inequalities. Though local quadratic convergence of the algorithm is not a priori guaranteed or observed in all cases, numerical experiments, including application to an output feedback stabilization problem, show the effectiveness of the algorithm.
引用
收藏
页码:3138 / 3144
页数:7
相关论文
共 50 条
  • [41] A REGULARIZED NEWTON-LIKE METHOD FOR NONLINEAR PDE
    Pollock, Sara
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (11) : 1493 - 1511
  • [42] A modified Newton-like method for nonlinear equations
    Wu, Song
    Wang, Haijun
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [43] Construction of Newton-like iteration methods for solving nonlinear equations
    Changbum Chun
    [J]. Numerische Mathematik, 2006, 104 : 297 - 315
  • [44] CONVERGENCE OF NEWTON-LIKE METHODS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
    BUS, JCP
    [J]. NUMERISCHE MATHEMATIK, 1977, 27 (03) : 271 - 281
  • [45] Newton-Type Method for Solving Systems of Linear Equations and Inequalities
    A. I. Golikov
    Yu. G. Evtushenko
    I. E. Kaporin
    [J]. Computational Mathematics and Mathematical Physics, 2019, 59 : 2017 - 2032
  • [46] Newton-Type Method for Solving Systems of Linear Equations and Inequalities
    Golikov, A. I.
    Evtushenko, Yu. G.
    Kaporin, I. E.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (12) : 2017 - 2032
  • [47] Newton-like method for line outage simulation
    Lo, KL
    Meng, ZJ
    [J]. IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2004, 151 (02) : 225 - 231
  • [48] A Newton-like method for nonlinear system of equations
    María D. González-Lima
    Flor Montes de Oca
    [J]. Numerical Algorithms, 2009, 52 : 479 - 506
  • [49] Semilocal Convergence Theorem for a Newton-like Method
    Lin, Rong-Fei
    Wu, Qing-Biao
    Chen, Min-Hong
    Liu, Lu
    Dai, Ping-Fei
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 482 - 494
  • [50] Concerning the Convergence of a Modified Newton-Like Method
    Argyros, Ioannis K.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (03): : 785 - 792