MULTI-MODAL IMAGE REGISTRATION USING FUZZY KERNEL REGRESSION

被引:4
|
作者
Ardizzone, Edoardo [1 ]
Gallea, Roberto [1 ]
Gambino, Orazio [1 ]
Pirrone, Roberto [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn Informat, DINFO, I-90128 Palermo, Italy
关键词
image registration; fuzzy; kernel regression; mutual information; clustering;
D O I
10.1109/ICIP.2009.5414220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a study aimed to the realization of a novel multiresolution registration framework. The transformation function is computed iteratively as a composition of local deformations determined by the maximization of mutual information. At each iteration, local transformations are joint together using fuzzy kernel regression. This technique represents the core of the mothod and it's formally described from a probabilistic perspective. It avoids blocking artifacts and allows to keep the final deformation spatially congruent and smooth. Both qualitative and quantitative experimental results show that this approach is equally effective for registering datasets acquired from both single and multiple diagnostic modalities.
引用
收藏
页码:193 / 196
页数:4
相关论文
共 50 条
  • [31] Structured Decision Forests for Multi-modal Ultrasound Image Registration
    Oktay, Ozan
    Schuh, Andreas
    Rajchl, Martin
    Keraudren, Kevin
    Gomez, Alberto
    Heinrich, Mattias P.
    Penney, Graeme
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 363 - 371
  • [32] SMRD: A Local Feature Descriptor for Multi-modal Image Registration
    Xie, Jiayu
    Jin, Xin
    Cao, Hongkun
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [33] A detector of structural similarity for multi-modal microscopic image registration
    Lv, Guohua
    Teng, Shyh Wei
    Lu, Guojun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (06) : 7675 - 7701
  • [34] A detector of structural similarity for multi-modal microscopic image registration
    Guohua Lv
    Shyh Wei Teng
    Guojun Lu
    Multimedia Tools and Applications, 2018, 77 : 7675 - 7701
  • [35] LEARNING OPTIMAL SHAPE REPRESENTATIONS FOR MULTI-MODAL IMAGE REGISTRATION
    Grossiord, Eloise
    Risser, Laurent
    Kanoun, Salim
    Ken, Soleakhena
    Malgouyres, Francois
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 722 - 725
  • [36] A Systematic Literature Review on Multi-modal Medical Image Registration
    Chaabane, Marwa
    Koller, Bruno
    SERVICE-ORIENTED COMPUTING - ICSOC 2022 WORKSHOPS, 2023, 13821 : 97 - 105
  • [37] SELF-SIMILARITY MEASURE FOR MULTI-MODAL IMAGE REGISTRATION
    Kasiri, Keyvan
    Fieguth, Paul
    Clausi, David A.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4498 - 4502
  • [38] MODIFIED SIFT FOR MULTI-MODAL REMOTE SENSING IMAGE REGISTRATION
    Hasan, Mahmudul
    Pickering, Mark R.
    Jia, Xiuping
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2348 - 2351
  • [39] Learning-Based Multi-Modal Rigid Image Registration By Using Bhattacharyya Distances
    So, Ronald W. K.
    Chung, Albert C. S.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2642 - 2645
  • [40] Accelerating multi-modal image registration using a supervoxel-based variational framework
    Lafitte, L.
    Zachiu, C.
    Kerkmeijer, L. G. W.
    Ries, M.
    de Senneville, B. Denis
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (23):