Scene Description for Visually Impaired People with Multi-Label Convolutional SVM Networks

被引:10
|
作者
Bazi, Yakoub [1 ]
Alhichri, Haikel [1 ]
Alajlan, Naif [1 ]
Melgani, Farid [2 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[2] Univ Trento, Dept Informat Engn & Comp Sci, Via Sommarive 9, I-38123 Trento, Italy
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 23期
关键词
visually impaired (VI); computer vision; deep learning; multi-label convolutional support vector machine (M-CSVM); OBJECT DETECTION; RECOGNITION; AID;
D O I
10.3390/app9235062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we present a portable camera-based method for helping visually impaired (VI) people to recognize multiple objects in images. This method relies on a novel multi-label convolutional support vector machine (CSVM) network for coarse description of images. The core idea of CSVM is to use a set of linear SVMs as filter banks for feature map generation. During the training phase, the weights of the SVM filters are obtained using a forward-supervised learning strategy unlike the backpropagation algorithm used in standard convolutional neural networks (CNNs). To handle multi-label detection, we introduce a multi-branch CSVM architecture, where each branch will be used for detecting one object in the image. This architecture exploits the correlation between the objects present in the image by means of an opportune fusion mechanism of the intermediate outputs provided by the convolution layers of each branch. The high-level reasoning of the network is done through binary classification SVMs for predicting the presence/absence of objects in the image. The experiments obtained on two indoor datasets and one outdoor dataset acquired from a portable camera mounted on a lightweight shield worn by the user, and connected via a USB wire to a laptop processing unit are reported and discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multi-label classification of line chart images using convolutional neural networks
    Kosemen, Cem
    Birant, Derya
    SN APPLIED SCIENCES, 2020, 2 (07):
  • [22] Multi-label classification of line chart images using convolutional neural networks
    Cem Kosemen
    Derya Birant
    SN Applied Sciences, 2020, 2
  • [23] Multi-Label ECG Classification Using Convolutional Neural Networks in a Classifier Chain
    Singstad, Bjorn-Jostein
    Muten, Eraraya Morenzo
    Brekke, Pal Haugar
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [24] Semantic Embedding Graph Convolutional Networks for Multi-label Video Segment Classification
    Li, Zhitao
    Wang, Jianzong
    Cheng, Ning
    Xiao, Jing
    PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 146 - 151
  • [25] Ensemble Application of Convolutional and Recurrent Neural Networks for Multi-label Text Categorization
    Chen, Guibin
    Ye, Deheng
    Xing, Zhenchang
    Chen, Jieshan
    Cambria, Erik
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2377 - 2383
  • [26] Multiple Semantic Embedding with Graph Convolutional Networks for Multi-Label Image Classification
    Zhou, Tong
    Feng, Songhe
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 449 - 461
  • [27] Improving SVM Based Multi-label Classification by Using Label Relationship
    Fu, Di
    Zhou, Bo
    Hu, Jinglu
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [28] Multi-label learning algorithm with SVM based association
    Feng P.
    Qin D.
    Ji P.
    Ma J.
    Zhang Y.
    Yang S.
    High Technology Letters, 2019, 25 (01) : 97 - 104
  • [29] Multi-label SVM active learning for image classification
    Li, XC
    Wang, L
    Sung, E
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2207 - 2210
  • [30] Multi-label learning algorithm with SVM based association
    冯攀
    Qin Danyang
    Ji Ping
    Ma Jingya
    Zhang Yan
    Yang Songxiang
    High Technology Letters, 2019, 25 (01) : 97 - 104