Utilization distribution estimation using weighted kernel density estimators

被引:31
|
作者
Fieberg, John [1 ]
机构
[1] Minnesota Dept Nat Resources, Biometr Unit, Forest Lake, MN 55025 USA
来源
JOURNAL OF WILDLIFE MANAGEMENT | 2007年 / 71卷 / 05期
关键词
autocorrelation; home range; kernel density; smoothing parameter; stratified random sampling; utilization distribution; weighted kernel density estimators;
D O I
10.2193/2006-370
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ecologists and wildlife biologists have long recognized the importance of random sampling but have largely used haphazard (i.e., nonrandom) designs for collecting location data for home-range and habitat-use studies. Using simulated movement paths, I illustrate the importance of random sampling in obtaining unbiased estimates of space use in home-range and habitat-use studies. Stratified random sampling will typically be more time efficient and easier to implement than simple random sampling. Therefore, I propose 2 weighted kernel density estimators (WKDEs) for use with stratified designs. Simulations indicate that these weighted estimators perform considerably better than traditional kernel density estimators when observations are sampled nonuniformly in time. Lastly, I illustrate the use of WKDEs to analyze data for a female northern white-tailed deer (Odocoileus virginianus) collected using Global Positioning Systems with seasonally varying intensity levels. By correcting for nonuniform sampling intensities, these estimators may provide a more accurate description of space use over the fixed study period.
引用
收藏
页码:1669 / 1675
页数:7
相关论文
共 50 条
  • [21] THE WEIGHTED HELLINGER DISTANCE IN THE MULTIVARIATE KERNEL DENSITY ESTIMATION
    Mugdadi, A. R.
    Anver, Haneef
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2016, 50 (02) : 221 - 236
  • [22] On kernel estimators of density ratio
    Chen, Sy-Mien
    Hsu, Yu-Sheng
    Liaw, Jian-Tong
    [J]. STATISTICS, 2009, 43 (05) : 463 - 479
  • [23] Averaging of density kernel estimators
    Chernova, O.
    Lavancier, F.
    Rochet, P.
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [24] Estimation of the asymptotic variance of kernel density estimators for continuous time processes
    Guillou, A
    Merlevède, F
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 79 (01) : 114 - 137
  • [25] ESTIMATION OF A REGRESSION FUNCTION BY PARZEN KERNEL-TYPE DENSITY ESTIMATORS
    NODA, K
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1976, 28 (02) : 221 - 234
  • [26] Comparison of Kernel Density Estimators
    Rodchuen, Manachai
    Suwattee, Prachoom
    [J]. THAILAND STATISTICIAN, 2010, 8 (02): : 167 - 181
  • [27] ESTIMATING THE TUMOR ONSET DISTRIBUTION USING KERNEL ESTIMATORS
    SCHABE, H
    [J]. BIOMETRICAL JOURNAL, 1991, 33 (02) : 191 - 206
  • [28] On the homogeneity test based on the kernel-type estimators of a distribution density
    Babilua, Petre
    Nadaraya, Elizbar
    [J]. TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2018, 172 (03) : 318 - 331
  • [29] Central node identification via weighted kernel density estimation
    Yan Liu
    Xue Feng
    Jun Lou
    Lianyu Hu
    Zengyou He
    [J]. Data Mining and Knowledge Discovery, 2024, 38 : 1417 - 1439
  • [30] Fast dynamic routing based on weighted kernel density estimation
    Zhang, Suofei
    Zhao, Wei
    Wu, Xiaofu
    Zhou, Quan
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (15):