Utilization distribution estimation using weighted kernel density estimators

被引:31
|
作者
Fieberg, John [1 ]
机构
[1] Minnesota Dept Nat Resources, Biometr Unit, Forest Lake, MN 55025 USA
来源
JOURNAL OF WILDLIFE MANAGEMENT | 2007年 / 71卷 / 05期
关键词
autocorrelation; home range; kernel density; smoothing parameter; stratified random sampling; utilization distribution; weighted kernel density estimators;
D O I
10.2193/2006-370
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ecologists and wildlife biologists have long recognized the importance of random sampling but have largely used haphazard (i.e., nonrandom) designs for collecting location data for home-range and habitat-use studies. Using simulated movement paths, I illustrate the importance of random sampling in obtaining unbiased estimates of space use in home-range and habitat-use studies. Stratified random sampling will typically be more time efficient and easier to implement than simple random sampling. Therefore, I propose 2 weighted kernel density estimators (WKDEs) for use with stratified designs. Simulations indicate that these weighted estimators perform considerably better than traditional kernel density estimators when observations are sampled nonuniformly in time. Lastly, I illustrate the use of WKDEs to analyze data for a female northern white-tailed deer (Odocoileus virginianus) collected using Global Positioning Systems with seasonally varying intensity levels. By correcting for nonuniform sampling intensities, these estimators may provide a more accurate description of space use over the fixed study period.
引用
收藏
页码:1669 / 1675
页数:7
相关论文
共 50 条
  • [1] Kernel density estimators: convergence in distribution for weighted sup-norms
    Evarist Giné
    Vladimir Koltchinskii
    Lyudmila Sakhanenko
    [J]. Probability Theory and Related Fields, 2004, 130 : 167 - 198
  • [2] Kernel density estimators:: convergence in distribution for weighted sup-norms
    Giné, E
    Koltchinskii, V
    Sakhanenko, L
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (02) : 167 - 198
  • [3] ESTIMATION OF MUTUAL INFORMATION USING KERNEL DENSITY ESTIMATORS
    MOON, YI
    RAJAGOPALAN, B
    LALL, U
    [J]. PHYSICAL REVIEW E, 1995, 52 (03): : 2318 - 2321
  • [4] Kernel density estimation using weighted data
    Guillamon, A
    Navarro, J
    Ruiz, JM
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (09) : 2123 - 2135
  • [5] Weighted samples, kernel density estimators and convergence
    Francisco J. Goerlich Gisbert
    [J]. Empirical Economics, 2003, 28 (2) : 335 - 351
  • [6] Nonparametric density deconvolution by weighted kernel estimators
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. STATISTICS AND COMPUTING, 2009, 19 (03) : 217 - 228
  • [7] Nonparametric density deconvolution by weighted kernel estimators
    Martin L. Hazelton
    Berwin A. Turlach
    [J]. Statistics and Computing, 2009, 19 : 217 - 228
  • [8] Weighted uniform consistency of kernel density estimators
    Giné, E
    Koltchinskii, V
    Zinn, J
    [J]. ANNALS OF PROBABILITY, 2004, 32 (3B): : 2570 - 2605
  • [9] An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators
    Kornatka, Miroslaw
    Gawlak, Anna
    [J]. ENERGIES, 2021, 14 (21)
  • [10] On the performance of weighted bootstrapped kernel deconvolution density estimators
    Al-Sharadqah, Ali
    Mojirsheibani, Majid
    Pouliot, William
    [J]. STATISTICAL PAPERS, 2020, 61 (04) : 1773 - 1798