The detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) is being increasingly performed with the help of Computer Aided Diagnosis (CAD) systems based on Deep Learning (DL), that support the pathologists in performing their decision by analyzing the blood samples to determine the presence of lymphoblasts. When using DL, the limited dimensionality of ALL databases favors the use of transfer learning techniques to increase the accuracy in the detection, by considering Convolutional Neural Networks (CNN) pretrained on the general purpose ImageNet database. However, no method in the literature has yet considered the use of CNNs pretrained on histopathology databases to perform transfer learning for ALL detection. In fact, the majority of histopathology databases in the literature has either a small number of samples or limited ground truth labeling possibilities (e.g., only two possible classes), which hinders the effectiveness of training CNNs from scratch. In this paper, we propose the first method based on histopathological transfer learning for ALL detection, that trains a CNN on a histopathology database to classify tissue types, then performs a fine tuning on the ALL database to detect the presence of lymphoblasts. As histopathology database, we consider a multi-label dataset with a significantly higher number of samples and classes with respect to the literature, which enables CNNs to learn general features for histopathology image processing and hence allow to perform a more effective transfer learning, with respect to CNNs pretrained on ImageNet. We evaluate the methodology on a publicly-available ALL database and considering multiple CNNs, with results confirming the validity of our approach.