Spectroscopic characterization of natural calcite minerals

被引:76
|
作者
Gunasekaran, S. [1 ]
Anbalagan, G.
机构
[1] Pachaiyappas Coll, Res Dept Phys, Madras 600030, Tamil Nadu, India
[2] Pachaiyappas Coll, PG, Madras 600030, Tamil Nadu, India
[3] Presidency Coll, Res Dept Phys, Madras 600005, Tamil Nadu, India
[4] Presidency Coll, PG, Madras 600005, Tamil Nadu, India
关键词
limestone; (13)c nmr; (29)si nmr; (27)al nmr;
D O I
10.1016/j.saa.2006.12.043
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm(-1). The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a = 4.9781 angstrom, c = 17.1188 angstrom. The range of C-13 chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. Al-27 MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in Si-29 MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:656 / 664
页数:9
相关论文
共 50 条
  • [31] Spectroscopic characterization of interactions between hemoglobin and natural silicates
    Dumitru, RS
    Mandravel, C
    Bercu, C
    Fagarasan, E
    SPECTROSCOPY OF BIOLOGICAL MOLECULES: NEW DIRECTIONS, 1999, : 593 - 594
  • [32] Collect mechanisms of oleic acid on fluorite and calcite minerals
    Lin, Dong
    Nie, Guanghua
    Luo, Guoju
    Tang, Zhipeng
    Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology (ICMIT), 2016, 49 : 665 - 671
  • [33] Kinetics of dry grinding of industrial minerals: calcite and barite
    Teke, E
    Yekeler, M
    Ulusoy, U
    Canbazoglu, A
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2002, 67 (1-4) : 29 - 42
  • [34] ETCH-PIT MICROSCOPY ON CALCITE AND RELATED MINERALS
    BAER, N
    LEWIN, SZ
    MATERIALS RESEARCH AND STANDARDS, 1968, 8 (05): : 66 - &
  • [35] Uranyl incorporation in natural calcite
    Kelly, SD
    Newville, MG
    Cheng, L
    Kemner, KM
    Sutton, SR
    Fenter, P
    Sturchio, NC
    Spötl, C
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (07) : 1284 - 1287
  • [36] Natural hyperbolicity in bulk calcite
    Mukhopadhyay, Saikat
    Ellis, Chase T.
    Ratchford, Daniel C.
    Jackson, Eric M.
    Tischler, Joseph G.
    Reinecke, Thomas L.
    Johannes, Michelle D.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (14)
  • [37] Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use
    Strejcova, Katerina
    Tisler, Zdenek
    Svobodova, Eliska
    Velvarskia, Romana
    MOLECULES, 2020, 25 (21):
  • [38] Spectroscopic studies of As(V) uptake by calcite.
    Alexandratos, VG
    Elzinga, EJ
    Reeder, RJ
    Schoonen, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U596 - U596
  • [39] Organic coprecipitates with calcite: NMR spectroscopic evidence
    Phillips, BL
    Lee, YJ
    Reeder, RJ
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (12) : 4533 - 4539
  • [40] Minerals from Macedonia XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates
    Makreski, Petre
    Jovanovski, Gligor
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2009, 73 (03) : 460 - 467