Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries

被引:45
|
作者
Sun, Antao [1 ]
Zhong, Hui [1 ]
Zhou, Xiangyang [1 ]
Tang, Jingjing [1 ]
Jia, Ming [1 ]
Cheng, Fangyan [1 ]
Wang, Qian [1 ]
Yang, Juan [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
Nano-Si; Graphite; Carbon encapsulation; Cyclic stability; Lithium-ion battery; HIGH-PERFORMANCE; C COMPOSITE; LOW-COST; SILICON; ELECTRODES; DESIGN; BINDER;
D O I
10.1016/j.apsusc.2018.11.117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alternative anode materials are required to meet the urgent demand for high-power density lithium-ion batteries (LIBs) since commercial graphite anode is approaching its limits. Silicon with ultrahigh specific capacity and large abundance is proposed to be an attractive substitute as high-performance anode material. However, the practical application of Si-based materials in LIBs is still impeded by unsatisfied cycling ability. Herein, carbon-encapsulated nano-Si on graphite hybrid composite (nano-Si/G/C) is elaborately designed and fabricated through a facile and scalable process. In this structure, Si nanoparticles are adhering on bulk graphite and further encapsulating by asphalt derived carbon. Graphite can guarantee the conductivity and asphalt derived carbon can buffer the volume changes of nano-Si with controlled amount (below 30 wt%) as well as limit the side reactions between nano-Si and electrolyte. The obtained nano-Si/G/C anodes with different areal mass loadings ranging from 0.968 mg cm(-2) to 4.28 mg cm(-2) exhibit high cyclic stability. Furthermore, nano-Si/G/C anodes with multifarious reversible specific capacities (400-820 mA h g(-1)) could be synthesized by adjusting the production process. The superior properties indicate that the proposed nano-Si/G/C composites are of great potential toward the practical application in LIBs.
引用
收藏
页码:454 / 461
页数:8
相关论文
共 50 条
  • [31] High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries
    Xu, Ruhui
    Zhang, Keyu
    Wei, Runhong
    Yuan, Meimei
    Zhang, Yenan
    Liang, Feng
    Yao, Yaochun
    IONICS, 2020, 26 (01) : 1 - 11
  • [32] Scalable synthesis of SnCo/NC composite as a high performance anode material for lithium-ion batteries
    Wang, Hongqiang
    Sun, Yanna
    Zhang, Xiaohui
    Ding, Yajun
    Wang, Yi
    Wu, Xianming
    Li, Qingyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 775 : 975 - 981
  • [33] Two step pyrolysis synthesis method of graphite-enhanced Nano-Si/Pitch composite as long cycle life anode for lithium-ion batteries
    Nyamtara, Kelvin Jenerali
    Song, Jong Kwon
    Karima, Neema Cyril
    Kim, Sung Hoon
    Nguyen, Manh Cuong
    Duong, Thi Phuong Mai
    Lee, Kyung Jin
    Ahn, Wook
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [34] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [35] Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries
    Ji, Junyi
    Ji, Hengxing
    Zhang, Li Li
    Zhao, Xin
    Bai, Xin
    Fan, Xiaobin
    Zhang, Fengbao
    Ruoff, Rodney S.
    ADVANCED MATERIALS, 2013, 25 (33) : 4673 - 4677
  • [36] Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode material for lithium-ion batteries
    Shi, Ming
    Song, Changlei
    Tai, Zige
    Zou, Kunyang
    Duan, Yue
    Dai, Xin
    Sun, Junjie
    Chen, Yuanzhen
    Liu, Yongning
    FUEL, 2021, 292
  • [37] High performance Si/MgO/graphite composite as the anode for lithium-ion batteries
    Zhou, Wenchao
    Upreti, Shailesh
    Whittingham, M. Stanley
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (10) : 1102 - 1104
  • [38] Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries
    Tang, Xiaofu
    Wen, Guangwu
    Song, Yan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 739 : 510 - 517
  • [39] Nitrogen-Doped Carbon-Encapsulated Ordered Mesoporous SiOx as Anode for High-Performance Lithium-Ion Batteries
    Ling, Yang
    Gao, Yuan
    Peng, Yan
    Guan, Shiyou
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (16)