Robust Tensor Decomposition with Gross Corruption

被引:0
|
作者
Gu, Quanquan [1 ]
Gui, Huan [2 ]
Han, Jiawei [2 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
MATRIX DECOMPOSITION; COMPLETION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the statistical performance of robust tensor decomposition with gross corruption. The observations are noisy realization of the superposition of a low-rank tensor W* and an entrywise sparse corruption tensor V*. Unlike conventional noise with bounded variance in previous convex tensor decomposition analysis, the magnitude of the gross corruption can be arbitrary large. We show that under certain conditions, the true low-rank tensor as well as the sparse corruption tensor can be recovered simultaneously. Our theory yields nonasymptotic Frobenius-norm estimation error bounds for each tensor separately. We show through numerical experiments that our theory can precisely predict the scaling behavior in practice.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Fully-connected tensor network decomposition with gradient factors regularization for robust tensor completion
    Xiao, Bin
    Li, Heng-Chao
    Wang, Rui
    Zheng, Yu-Bang
    SIGNAL PROCESSING, 2025, 233
  • [22] Towards Multi-Mode Outlier Robust Tensor Ring Decomposition
    Qiu, Yuning
    Zhou, Guoxu
    Wang, Andong
    Huang, Zhenhao
    Zhao, Qibin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14713 - 14721
  • [23] Denoising of the Speckle Noise by Robust Low-rank Tensor Decomposition
    Calis, Metin
    Hunyadi, Borbala
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1157 - 1161
  • [24] Robust tensor decomposition via orientation invariant tubal nuclear norms
    WANG AnDong
    ZHAO QiBin
    JIN Zhong
    LI Chao
    ZHOU GuoXu
    Science China(Technological Sciences), 2022, 65 (06) : 1300 - 1317
  • [25] Parallel Active Subspace Decomposition for Tensor Robust Principal Component Analysis
    Ng, Michael K.
    Wang, Xue-Zhong
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (02) : 221 - 241
  • [26] Robust tensor decomposition via orientation invariant tubal nuclear norms
    AnDong Wang
    QiBin Zhao
    Zhong Jin
    Chao Li
    GuoXu Zhou
    Science China Technological Sciences, 2022, 65 : 1300 - 1317
  • [27] Robust coupled tensor decomposition and feature extraction for multimodal medical data
    Zhao, Meng
    Gahrooei, Mostafa Reisi
    Gaw, Nathan
    IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING, 2023, 13 (02) : 117 - 131
  • [28] Robust tensor decomposition via orientation invariant tubal nuclear norms
    Wang AnDong
    Zhao QiBin
    Jin Zhong
    Li Chao
    Zhou GuoXu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (06) : 1300 - 1317
  • [29] Robust Tensor Decomposition via Orientation Invariant Tubal Nuclear Norms
    Wang, Andong
    Li, Chao
    Jin, Zhong
    Zhao, Qibin
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6102 - 6109
  • [30] Scalable and Robust Tensor Ring Decomposition for Large-scale Data
    He, Yicong
    Atia, George K.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 860 - 869