Robust Tensor Decomposition with Gross Corruption

被引:0
|
作者
Gu, Quanquan [1 ]
Gui, Huan [2 ]
Han, Jiawei [2 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
MATRIX DECOMPOSITION; COMPLETION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the statistical performance of robust tensor decomposition with gross corruption. The observations are noisy realization of the superposition of a low-rank tensor W* and an entrywise sparse corruption tensor V*. Unlike conventional noise with bounded variance in previous convex tensor decomposition analysis, the magnitude of the gross corruption can be arbitrary large. We show that under certain conditions, the true low-rank tensor as well as the sparse corruption tensor can be recovered simultaneously. Our theory yields nonasymptotic Frobenius-norm estimation error bounds for each tensor separately. We show through numerical experiments that our theory can precisely predict the scaling behavior in practice.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fourier PCA and Robust Tensor Decomposition
    Goyal, Navin
    Vempala, Santosh
    Xiao, Ying
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 584 - 593
  • [2] Robust Image Hashing with Tensor Decomposition
    Tang, Zhenjun
    Chen, Lv
    Zhang, Xianquan
    Zhang, Shichao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (03) : 549 - 560
  • [3] Structured-Anomaly Pursuit of Network Traffic via Corruption-Robust Low-Rank Tensor Decomposition
    Zeng, Jiuzhen
    Yang, Laurence T.
    Wang, Chao
    Ruan, Yiheng
    Zhu, Chenlu
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 2510 - 2523
  • [4] Robust Face Clustering Via Tensor Decomposition
    Cao, Xiaochun
    Wei, Xingxing
    Han, Yahong
    Lin, Dongdai
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) : 2546 - 2557
  • [5] A Robust Spectral Algorithm for Overcomplete Tensor Decomposition
    Hopkins, Samuel B.
    Schramm, Tselil
    Shi, Jonathan
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [6] Robust tensor completion using transformed tensor singular value decomposition
    Song, Guangjing
    Ng, Michael K.
    Zhang, Xiongjun
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (03)
  • [7] FULLY-CONNECTED TENSOR NETWORK DECOMPOSITION FOR ROBUST TENSOR COMPLETION PROBLEM
    Liu, Yun-Yang
    Zhao, Xi-Le
    Song, Guang-Jing
    Zheng, Yu-Bang
    Ng, Michael K.
    Huang, Ting-Zhu
    INVERSE PROBLEMS AND IMAGING, 2023, : 208 - 238
  • [8] Bayesian robust tensor completion via CP decomposition
    Wang, Xiaohang
    Yu, Philip L. H.
    Yang, Weidong
    Su, Jun
    PATTERN RECOGNITION LETTERS, 2022, 163 : 121 - 128
  • [9] Coupled Tensor Decomposition: a Step Towards Robust Components
    Genicot, Matthieu
    Absil, P. -A.
    Lambiotte, Renaud
    Sami, Saber
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1308 - 1312
  • [10] A TWO-STAGE APPROACH TO ROBUST TENSOR DECOMPOSITION
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 831 - 835