Branching Random Walks Conditioned on Particle Numbers

被引:1
|
作者
Bai, Tianyi [1 ]
Rousselin, Pierre [1 ]
机构
[1] Univ Sorbonne Paris Nord, Lab Geometrie Anal & Applicat, CNRS UMR 7539, Villetaneuse, France
关键词
Branching random walk; Galton-Watson tree; Gap statistics; Conditioned on particle numbers;
D O I
10.1007/s10955-021-02833-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider a pruned Galton-Watson tree conditioned to have k particles in generation n, i.e. we take a Gallon-Watson tree satisfying Z(n) = k, and delete all branches that die before generation n. We show that with k fixed and n -> infinity, the first n generations of this tree can be described by an explicit probability measure P-k(st). As an application, we study a branching random walk (V-u)(u is an element of T) indexed by such a pruned Galton-Watson tree T, and give the asymptotic tail behavior of the span and gap statistics of its k particles in generation n, (V-u)(vertical bar u vertical bar=n). This is the discrete version of Ramola et al. (Chaos Solitons Fractals 74:79-88, 2015), generalized to arbitrary offspring and displacement distributions with moment constraints.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Branching Random Walks Conditioned on Particle Numbers
    Tianyi Bai
    Pierre Rousselin
    [J]. Journal of Statistical Physics, 2021, 185
  • [2] Branching Brownian motion conditioned on particle numbers
    La, Kabir Ramo
    Majumdar, Satya N.
    Schehr, Gregory
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 74 : 79 - 88
  • [3] Survival analysis of particle populations in branching random walks
    Rytova, Anastasiia
    Yarovaya, Elena
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (10) : 3031 - 3045
  • [4] Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
    Vatutin, Vladimir A.
    Dong, Congzao
    Dyakonova, Elena E.
    [J]. SBORNIK MATHEMATICS, 2023, 214 (11) : 1501 - 1533
  • [5] CRITERIA OF EXPONENTIAL GROWTH FOR THE NUMBERS OF PARTICLES IN MODELS OF BRANCHING RANDOM WALKS
    Yarovaya, E. B.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) : 661 - 682
  • [6] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [7] Branching Random Walks and Martingales
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28
  • [8] Cookie branching random walks
    Bartsch, Christian
    Kochler, Michael
    Kochler, Thomas
    Mueller, Sebastian
    Popov, Serguei
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 323 - 358
  • [9] On the trace of branching random walks
    Benjamini, Itai
    Mueller, Sebastian
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 231 - 247
  • [10] Branching Random Walks with Selection
    Shi, Zhan
    [J]. BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 99 - 105