Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy

被引:1
|
作者
Morris, RL
Azizuddin, K
Lam, M
Berlin, J
Nieminen, AL
Kenney, ME
Samia, ACS
Burda, C
Oleinick, NL
机构
[1] Case Western Reserve Univ, Sch Med, Dept Radiat Oncol, Ireland Comprehens Canc Ctr, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Sch Med, Dept Anat, Ireland Comprehens Canc Ctr, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Ctr Chem Dynam & Nanomat Res, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Phthalocyanine (Pc) 4, like many photosensitizers for photodynamic therapy (PDT), localizes to intracellular membranes, especially mitochondria. Pc 4-PDT photodamages Bcl-2 and Bcl-xL, antiapoptotic proteins interacting with the permeability transition pore complex that forms at contact sites between the inner and outer mitochondrial membranes. These complexes and the inner membrane are unique in containing the phospholipid cardiolipin. Nonyl-acridine orange (NAO) is a specific probe of cardiolipin. Here we show evidence for fluorescence resonance energy transfer from NAO to Pc 4, defining a binding site for the photosensitizer. This observation establishes an innovative tool for exploring the localization of other photosensitizers and additional fluorescent, mitochondrion-localizing drugs having appropriate spectral properties.
引用
收藏
页码:5194 / 5197
页数:4
相关论文
共 50 条
  • [21] Energy transfer facilitated near infrared fluorescence imaging and photodynamic therapy of tumors
    Wang, Yanjing
    Sun, Xiujuan
    Chang, Yun
    Zhang, Haiyuan
    [J]. BIOMATERIALS SCIENCE, 2021, 9 (13) : 4662 - 4670
  • [22] HU binding to bent DNA: A fluorescence resonance energy transfer study
    Wojtuszewski, K
    Mukerji, I
    [J]. BIOPHYSICAL JOURNAL, 2001, 80 (01) : 567A - 567A
  • [23] A fluorescence resonance energy transfer sensor based on maltose binding protein
    Medintz, IL
    Goldman, ER
    Lassman, ME
    Mauro, JM
    [J]. BIOCONJUGATE CHEMISTRY, 2003, 14 (05) : 909 - 918
  • [24] A fluorescence resonance energy transfer method for measuring the binding of inhibitors to stromelysin
    Epps, DE
    Mitchell, MA
    Petzold, GL
    VanDrie, JH
    Poorman, RA
    [J]. ANALYTICAL BIOCHEMISTRY, 1999, 275 (02) : 141 - 147
  • [25] Fluorescence Diagnosis of Damage to Tumor Tissues During Photodynamic Therapy with the Photosensitizer Photolon®
    M. P. Samtsov
    D. S. Tarasau
    K. N. Kaplevsky
    E. S. Voropay
    P. T. Petrov
    Yu. P. Istomin
    [J]. Journal of Applied Spectroscopy, 2016, 83 : 79 - 84
  • [26] Fluorescence Diagnosis of Damage to Tumor Tissues During Photodynamic Therapy with the Photosensitizer Photolon®
    Samtsov, M. P.
    Tarasau, D. S.
    Kaplevsky, K. N.
    Voropay, E. S.
    Petrov, P. T.
    Istomin, Yu. P.
    [J]. JOURNAL OF APPLIED SPECTROSCOPY, 2016, 83 (01) : 79 - 84
  • [27] Photosensitizer-complexed polypyrrole nanoparticles for activatable fluorescence imaging and photodynamic therapy
    Park, Dongjin
    Kim, Jisu
    Choi, Yongdoo
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (47) : 7545 - 7548
  • [28] Monitoring oxygen concentration during photodynamic therapy using prompt photosensitizer fluorescence
    Weston, Mark A.
    Patterson, Michael S.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (20): : 7039 - 7059
  • [29] An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging
    Zhou, Xiao
    Li, Haidong
    Shi, Chao
    Xu, Feng
    Zhang, Zhen
    Yao, Qichao
    Ma, He
    Sun, Wen
    Shao, Kun
    Du, Jianjun
    Long, Saran
    Fan, Jiangli
    Wang, Jingyun
    Peng, Xiaojun
    [J]. BIOMATERIALS, 2020, 253
  • [30] Green light point fluorescence spectroscopy for the detection of photosensitizer during photodynamic therapy
    Cuenca, RE
    Sibata, CH
    Bonnerup, CH
    Mota, HC
    Childs, C
    Downie, GH
    [J]. ANNALS OF SURGICAL ONCOLOGY, 2006, 13 (02) : 46 - 47