Class Specific Centralized Dictionary Learning based Kernel Collaborative Representation for Fine-grained Image Classification

被引:0
|
作者
Feng, Xiaojie [1 ]
Wang, Yanjiang [1 ]
Liu, Bao-Di [1 ]
机构
[1] China Univ Petr East China, Coll Informat & Control Engn, Qingdao, Peoples R China
来源
PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016) | 2016年
基金
中国国家自然科学基金;
关键词
class specific dictionary learning; kernel method; collaborative representation; fine-grained image classification; SPARSE REPRESENTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Classification algorithms based sparse coding have formed a mature system for visual recognition. Recent studies suggest collaborative representation is a much more effective method for classification, compared with sparse representation, the objective function of collaborative representation is constrained by l(2)-norm. Traditional collaborative representation based classification always uses a set of training samples to construct a dictionary directly, which causes high residual error and thus reduces the correct rate of classification. To handle the problem, we propose an innovative method, which integrates centralized image coding and class specific dictionary learning algorithm with collaborative representation based classification together, namely class specific centralized dictionary learning based collaborative representation (CSCDL-CRC). Meanwhile, kernel method can obtain nonlinear information between data points through mapping feature space to kernel space, especially when it is applied to image classification. We extended our proposed CSCDL-CRC to the kernel space to improve the classification performance. We make plenty of experiments on three frequently-used fine-grained image datasets, including Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset, Oxford 102-Flowers dataset and Stanford Dogs dataset, to validate the effectiveness of the proposed approach.
引用
收藏
页码:1077 / 1082
页数:6
相关论文
共 50 条
  • [31] Local Importance Representation Convolutional Neural Network for Fine-Grained Image Classification
    Yang, Yadong
    Wang, Xiaofeng
    Zhang, Hengzheng
    SYMMETRY-BASEL, 2018, 10 (10):
  • [32] Pixel Saliency Based Encoding for Fine-Grained Image Classification
    Yin, Chao
    Zhang, Lei
    Liu, Ji
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 : 274 - 285
  • [33] A fine-grained image classification method based on information interaction
    Zhu, Shuo
    Zhang, Xukang
    Wang, Yu
    Wang, Zongyang
    Sun, Jiahao
    IET IMAGE PROCESSING, 2024, 18 (14) : 4852 - 4861
  • [34] Fine-Grained Image Classification Model Based on Improved Transformer
    Tian Zhansheng
    Liu Libo
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [35] Efficient match kernel in fine-grained image categorization
    Zhang, Lei
    Cao, Yongjiao
    Xiang, Xuezhi
    Junejo, Naveed Ur Rehman
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5578 - 5581
  • [36] Learning Two-level Features for Fine-grained Image Classification
    Ji, Jinsheng
    Jiang, Linfeng
    Lei, Chenxi
    Zhong, Weilin
    Xiong, Huilin
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 544 - 549
  • [37] Learning enhanced features and inferring twice for fine-grained image classification
    Nie, Xuan
    Chai, Bosong
    Wang, Luyao
    Liao, Qiyu
    Xu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (10) : 14799 - 14813
  • [38] Image local structure information learning for fine-grained visual classification
    Lu, Jin
    Zhang, Weichuan
    Zhao, Yali
    Sun, Changming
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [39] Image local structure information learning for fine-grained visual classification
    Jin Lu
    Weichuan Zhang
    Yali Zhao
    Changming Sun
    Scientific Reports, 12
  • [40] ACCURATE AND FAST FINE-GRAINED IMAGE CLASSIFICATION VIA DISCRIMINATIVE LEARNING
    Wang, Zhihui
    Wang, Shijie
    Zhang, Pengbo
    Li, Haojie
    Liu, Bo
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 634 - 639