Generalized conformal pseudo-Galilean algebras and their Casimir operators

被引:5
|
作者
Campoamor-Stursberg, R. [1 ,2 ]
Marquette, I. [3 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Plaza Ciencias 3, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Dept Geometria & Topol, Plaza Ciencias 3, E-28040 Madrid, Spain
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Casimir operator; conformal Galilei algebra; non semi simple Lie algebras; virtual copy; KINEMATICAL INVARIANCE GROUP; LIE-ALGEBRAS; TRANSFORMATION;
D O I
10.1088/1751-8121/ab4c81
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization Gal(l) (p, q) of the conformal Galilei algebra g(l) (d) with Levi subalgebra isomorphic to sl(2, R) circle plus so(p, q) is introduced and a virtual copy of the latter in the enveloping algebra of the extension is constructed. Explicit expressions for the Casimir operators are obtained from the determinant of polynomial matrices. For the central factor algebra (Gal) over bar (l) (p, q), an exact formula giving the number of invariants is obtained and a procedure to compute invariant functions that do not depend on the variables of the Levi subalgebra is developed. It is further shown that such solutions determine complete sets of invariants provided that the relation d <= 2l + 2 is satisfied.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Representations of Lie conformal algebras related to Galilean conformal algebras
    Han, Xiu
    Wang, Dengyin
    Xia, Chunguang
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (06) : 2427 - 2438
  • [22] Motions of Curves in the Pseudo-Galilean Space G31
    Cengiz, Suleyman
    Ozturk, Esra Betul Koc
    Ozturk, Ufuk
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [23] Geometry of the Solutions of Localized Induction Equation in the Pseudo-Galilean Space
    Aydin, Muhittin Evren
    Mihai, Adela
    Ogrenmis, Alper Osman
    Ergut, Mahmut
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [24] A Transcendence Basis in the Differential Field of Invariants of Pseudo-Galilean Group
    Muminov, K. K.
    Chilin, V. I.
    RUSSIAN MATHEMATICS, 2019, 63 (03) : 15 - 24
  • [25] A study on classification of translation surfaces in pseudo-Galilean 3-space
    Abdel-Baky, Rashad A.
    Unluturk, Yasin
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2018, 6 (03) : 233 - 240
  • [26] Logarithmic exotic conformal Galilean algebras
    Henkel, Malte
    Hosseiny, Ali
    Rouhani, Shahin
    NUCLEAR PHYSICS B, 2014, 879 : 292 - 317
  • [27] Supersymmetric extension of Galilean conformal algebras
    Bagchi, Arjun
    Mandal, Ipsita
    PHYSICAL REVIEW D, 2009, 80 (08):
  • [28] Galilean conformal algebras and AdS/CFT
    Bagchi, Arjun
    Gopakumar, Rajesh
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07):
  • [29] Spinor Frenet and Darboux equations of spacelike curves in pseudo-Galilean geometry
    Abdel-Aziz, H. S.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4321 - 4328
  • [30] Geometry of Admissible Curves of Constant-Ratio in Pseudo-Galilean Space
    Saad, M. Khalifa
    Abdel-Aziz, H. S.
    Ali, Haytham A.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21