Generalized conformal pseudo-Galilean algebras and their Casimir operators

被引:5
|
作者
Campoamor-Stursberg, R. [1 ,2 ]
Marquette, I. [3 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Plaza Ciencias 3, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Dept Geometria & Topol, Plaza Ciencias 3, E-28040 Madrid, Spain
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Casimir operator; conformal Galilei algebra; non semi simple Lie algebras; virtual copy; KINEMATICAL INVARIANCE GROUP; LIE-ALGEBRAS; TRANSFORMATION;
D O I
10.1088/1751-8121/ab4c81
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization Gal(l) (p, q) of the conformal Galilei algebra g(l) (d) with Levi subalgebra isomorphic to sl(2, R) circle plus so(p, q) is introduced and a virtual copy of the latter in the enveloping algebra of the extension is constructed. Explicit expressions for the Casimir operators are obtained from the determinant of polynomial matrices. For the central factor algebra (Gal) over bar (l) (p, q), an exact formula giving the number of invariants is obtained and a procedure to compute invariant functions that do not depend on the variables of the Levi subalgebra is developed. It is further shown that such solutions determine complete sets of invariants provided that the relation d <= 2l + 2 is satisfied.
引用
收藏
页数:17
相关论文
共 50 条