Effects of cathode catalyst layer fabrication parameters on the performance of high-temperature polymer electrolyte membrane fuel cells

被引:40
|
作者
Lee, Eunae [1 ]
Kim, Do-Hyung [1 ]
Pak, Chanho [1 ]
机构
[1] Gwangju Inst Sci & Technol, Inst Integrated Technol, Sch Integrated Technol, Grad Program Energy Technol, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
HT-PEMFC; Triple phase boundary; Proton conductivity; Catalyst layer; Phosphoric acid-doped PBI; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; GAS-DIFFUSION ELECTRODES; PHOSPHORIC-ACID; PBI MEMBRANES; PEMFC; CONDUCTIVITY; DEGRADATION; ASSEMBLIES;
D O I
10.1016/j.apsusc.2020.145461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, cathode catalyst layers (CLs) are prepared via the different fabrication techniques of spraying, screen printing, and bar coating to examine the effect of the CL fabrication method on the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The differences in structural characterizations of CL are caused by the intrinsic characteristics of each fabrication process. The CL deposition and fabrication methods strongly affect the morphology of CL. The CL morphology is investigated with surficial and cross-sectional scanning electron microscopy images, which showed that cracks are generated deeply inside the bar coated CL, but not detected on the sprayed CL. The large cracks in bar- coated CL leads to low proton conductivity resistance in the CL but also makes it difficult for oxygen to approach the reaction sites resulting in high mass transport resistance. The pore size distributions of the CL are also examined by mercury intrusion porosimetry and the results show that the membrane electrode assembly (MEA) with the sprayed CL contains a well-developed pore structure with pore diameters of < 1 mu m that can be facilitated the mass transfer, yields a peak power density of 383 mW cm(-2).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells
    Martin, S.
    Li, Q.
    Steenberg, T.
    Jensen, J. O.
    JOURNAL OF POWER SOURCES, 2014, 272 : 559 - 566
  • [22] High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Huaneng Su
    Cecil Felix
    Olivia Barron
    Piotr Bujlo
    Bernard J. Bladergroen
    Bruno G. Pollet
    Sivakumar Pasupathi
    Electrocatalysis, 2014, 5 : 361 - 371
  • [23] Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells
    Cho, Yoon-Hwan
    Cho, Yong-Hun
    Jung, Namgee
    Ahn, Minjeh
    Kang, Yun Sik
    Chung, Dong Young
    Lim, Ju Wan
    Sung, Yung-Eun
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2012, 15 (02): : 109 - 114
  • [24] High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Su, Huaneng
    Felix, Cecil
    Barron, Olivia
    Bujlo, Piotr
    Bladergroen, Bernard J.
    Pollet, Bruno G.
    Pasupathi, Sivakumar
    ELECTROCATALYSIS, 2014, 5 (04) : 361 - 371
  • [25] Modulated Ionomer Distribution in the Catalyst Layer of Polymer Electrolyte Membrane Fuel Cells for High Temperature Operation
    Choo, Min-Ju
    Oh, Keun-Hwan
    Kim, Hee-Tak
    Park, Jung-Ki
    CHEMSUSCHEM, 2014, 7 (08) : 2335 - 2341
  • [26] Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid
    Park, Hyanjoo
    Kim, Hoyoung
    Kim, Dong-Kwon
    Lee, Woo Jae
    Choi, Insoo
    Kim, Hyoung-Juhn
    Kim, Soo-Kil
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (57) : 32844 - 32855
  • [27] Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells
    Eikerling, M
    Kornyshev, AA
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02): : 107 - 123
  • [28] Fabrication and performance of catalyst-coated membranes by layer-by-layer deposition of catalyst onto Nafion for polymer electrolyte membrane fuel cells
    Yilmazturk, Serpil
    Gumusoglu, Tolga
    Ari, Gulsen Albayrak
    Oksuzomer, Faruk
    Deligoz, Huseyin
    JOURNAL OF POWER SOURCES, 2012, 201 : 88 - 94
  • [29] Effect of dispersant on catalyst ink properties and catalyst layer structure for high performance polymer electrolyte membrane fuel cells
    So, Soonyong
    Oh, Keun-Hwan
    JOURNAL OF POWER SOURCES, 2023, 561
  • [30] An Experimental Method to Measure Flow Distribution in the Cathode of High-Temperature Polymer Electrolyte Membrane Fuel Cells Stack
    Ji, Feng
    Yang, Linlin
    Li, Yinhua
    Sun, Hai
    Sun, Gongquan
    ENERGY TECHNOLOGY, 2019, 7 (11)