HIERARCHICAL SPARSE AND COLLABORATIVE LOW-RANK REPRESENTATION FOR EMOTION RECOGNITION

被引:0
|
作者
Xiang, Xiang [1 ]
Minh Dao [1 ]
Hager, Gregory D. [1 ]
Tran, Trac D. [1 ]
机构
[1] Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
Low-rank; group sparsity; multichannel; SIGNAL RECOVERY; EXPRESSIONS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we design a Collaborative-Hierarchical Sparse and Low-Rank (C-HiSLR) model that is natural for recognizing human emotion in visual data. Previous attempts require explicit expression components, which are often unavailable and difficult to recover. Instead, our model exploits the low-rank property to subtract neutral faces from expressive facial frames as well as performs sparse representation on the expression components with group sparsity enforced. For the CK+ dataset, C-HiSLR on raw expressive faces performs as competitive as the Sparse Representation based Classification (SRC) applied on manually prepared emotions. Our C-HiSLR performs even better than SRC in terms of true positive rate.
引用
收藏
页码:3811 / 3815
页数:5
相关论文
共 50 条
  • [41] Sparse Individual Low-Rank Component Representation for Face Recognition in the IoT-Based System
    Yang, Shicheng
    Wen, Ying
    He, Lianghua
    Zhou, Mengchu
    Abusorrah, Abdullah
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (24) : 17320 - 17332
  • [42] Joint latent low-rank and non-negative induced sparse representation for face recognition
    Wu, Mingna
    Wang, Shu
    Li, Zhigang
    Zhang, Long
    Wang, Ling
    Ren, Zhenwen
    APPLIED INTELLIGENCE, 2021, 51 (11) : 8349 - 8364
  • [43] Joint latent low-rank and non-negative induced sparse representation for face recognition
    Mingna Wu
    Shu Wang
    Zhigang Li
    Long Zhang
    Ling Wang
    Zhenwen Ren
    Applied Intelligence, 2021, 51 : 8349 - 8364
  • [44] Unsupervised Video Matting via Sparse and Low-Rank Representation
    Zou, Dongqing
    Chen, Xiaowu
    Cao, Guangying
    Wang, Xiaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1501 - 1514
  • [45] Robust Adaptive Low-Rank and Sparse Embedding for Feature Representation
    Wang, Lei
    Zhang, Zhao
    Liu, Guangcan
    Ye, Qiaolin
    Qin, Jie
    Wang, Meng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 800 - 805
  • [46] Sparse Representation and Low-Rank Approximation for Sensor Signal Processing
    Zhu, Yanping
    Jiang, Aimin
    Liu, Xiaofeng
    Kwan, Hon Keung
    2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [47] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [48] Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
    Peng, Jiangtao
    Sun, Weiwei
    Li, Heng-Chao
    Li, Wei
    Meng, Xiangchao
    Ge, Chiru
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 10 - 43
  • [49] Sparse and low-rank representation for multi-label classification
    Zhi-Fen He
    Ming Yang
    Applied Intelligence, 2019, 49 : 1708 - 1723
  • [50] Laplacian regularized low-rank sparse representation transfer learning
    Lin Guo
    Qun Dai
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 807 - 821