A promising two-dimensional channel material: monolayer antimonide phosphorus

被引:30
|
作者
Cai, Bo [1 ]
Xie, Meiqiu [1 ]
Zhang, Shengli [1 ]
Huang, Chengxi [2 ]
Kan, Erjun [2 ]
Chen, Xianping [3 ]
Gu, Yu [1 ]
Zeng, Haibo [1 ]
机构
[1] Nanjing Univ Sci & Technol, Coll Mat Sci & Engn, Inst Optoelect & Nanomat, Jiangsu Key Lab Adv Micro & Nano Mat & Technol, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Dept Appl Phys, Nanjing 210094, Jiangsu, Peoples R China
[3] Chongqing Univ, Coll Optoelect Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
phosphorene; mobility; bandgap; density functional calculations; alloying strategy; MOS2; MOBILITY; SEMICONDUCTOR; INSULATORS; BANDGAP; STRAIN; CARBON; FILMS;
D O I
10.1007/s40843-016-5096-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As the base of modern electronic industry, field-effect transistor (FET) requires the channel material to have both moderate bandgap and high mobility. The recent progresses indicate that few-layer black phosphorus has suitable bandgap and higher mobility than two-dimensional (2D) MoS2, but the experimentally achieved maximal mobility (1000 cm(2)V(-1) s(-1)) is still obviously lower than those of classical semiconductors (1,400 and 5,400 cm(2) V-1 s(-1) for Si and InP). Here, for the first time, we report on monolayer antimonide phosphorus (SbP) as a promising 2D channel material with suitable direct bandgap, which can satisfy the on/off ratio, and with mobility as high as 10(4) cm(2) V-1 s(-1) based on density functional theory calculation. In particular, alpha-Sb1-xPx monolayers possess 0.3-1.6 eV bandgaps when 0.1 <= x <= 1, which are greater than the minimum bandgap (0.4 eV) required for large on/off ratio of FET. Surprisingly, the carrier mobilities of alpha-Sb1-xPx monolayers exhibit very high upper limit approaching 2x10(4) cm(2) V-1 s(-1) when 0 = x = 0.25 due to the ultra-small effective mass of holes and electrons. This work reveals that 2D SbP with both suitable bandgap and high mobility could be a promising candidate as eco-friendly high-performance FET channel materials avoiding short-channel effect in the post-silicon era, especially when considering the recent experimental success in realizing arsenide phosphorus (AsP) with similar structure.
引用
下载
收藏
页码:648 / 656
页数:9
相关论文
共 50 条
  • [31] Electron transport in the two-dimensional channel material - zinc oxide nanoflake
    Lai, Jian-Jhong
    Jian, Dunliang
    Lin, Yen-Fu
    Ku, Ming-Ming
    Jian, Wen-Bin
    PHYSICA B-CONDENSED MATTER, 2018, 532 : 135 - 138
  • [32] Two-Dimensional Planar BGe Monolayer as an Anode Material for Sodium-Ion Batteries
    Shao, Li
    Duan, Xiangyang
    Li, Yan
    Zeng, Fanguang
    Ye, Honggang
    Su, Chuanxun
    Ding, Pei
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (25) : 29764 - 29769
  • [33] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor*
    Zhang, Wei
    Zhang, Xiao-Qiang
    Liu, Lei
    Wang, Zhao-Qi
    Li, Zhi-Guo
    CHINESE PHYSICS B, 2021, 30 (07)
  • [34] Pd2Se3 Monolayer: A Promising Two-Dimensional Thermoelectric Material with Ultralow Lattice Thermal Conductivity and High Power Factor
    Naghavi, S. Shahab
    He, Jiangang
    Xia, Yi
    Wolverton, Chris
    CHEMISTRY OF MATERIALS, 2018, 30 (16) : 5639 - 5647
  • [35] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
    张伟
    张晓强
    刘蕾
    王朝棋
    李治国
    Chinese Physics B, 2021, 30 (07) : 555 - 561
  • [36] Two-dimensional material nanophotonics
    Fengnian Xia
    Han Wang
    Di Xiao
    Madan Dubey
    Ashwin Ramasubramaniam
    Nature Photonics, 2014, 8 : 899 - 907
  • [37] Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing
    Chaurasiya, Rajneesh
    Dixit, Ambesh
    APPLIED SURFACE SCIENCE, 2019, 490 : 204 - 219
  • [38] Two-dimensional material nanophotonics
    Xia, Fengnian
    Wang, Han
    Xiao, Di
    Dubey, Madan
    Ramasubramaniam, Ashwin
    NATURE PHOTONICS, 2014, 8 (12) : 899 - 907
  • [39] Two-dimensional material inks
    Sergio Pinilla
    João Coelho
    Ke Li
    Ji Liu
    Valeria Nicolosi
    Nature Reviews Materials, 2022, 7 : 717 - 735
  • [40] Two-dimensional material inks
    Pinilla, Sergio
    Coelho, Joao
    Li, Ke
    Liu, Ji
    Nicolosi, Valeria
    NATURE REVIEWS MATERIALS, 2022, 7 (09) : 717 - 735