ULAM-HYERS STABILITY FOR MATRIX-VALUED FRACTIONAL DIFFERENTIAL EQUATIONS

被引:5
|
作者
Yang, Zhanpeng [1 ]
Ren, Wenjuan [1 ]
Xu, Tianzhou [2 ]
机构
[1] Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Appli, Beijing 100190, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 03期
关键词
Mittag-Leffler matrix; matrix-valued fractional differential equation; Ulam-Hyers stability; LINEAR FUNCTIONAL-EQUATION; BANACH-SPACES; NORMED SPACES;
D O I
10.7153/jmi-2018-12-51
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some Ulam-Hyers stability results for matrix-valued fractional differential equations are obtained. We also establish some sufficient conditions for the stability of matrix-valued fractional differential equations.
引用
收藏
页码:665 / 675
页数:11
相关论文
共 50 条
  • [41] Ulam-Hyers Stability and Uniqueness for Nonlinear Sequential Fractional Differential Equations Involving Integral Boundary Conditions
    Al-khateeb, Areen
    Zureigat, Hamzeh
    Ala'yed, Osama
    Bawaneh, Sameer
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [42] Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions
    Wan, Fan
    Liu, Xiping
    Jia, Mei
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 6066 - 6083
  • [43] Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation
    Sousa, J. Vanterler da C.
    Capelas de Oliveira, E.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 81 : 50 - 56
  • [44] Existence of a Unique Solution and the Hyers-Ulam-H-Fox Stability of the Conformable Fractional Differential Equation by Matrix-Valued Fuzzy Controllers
    Eidinejad, Zahra
    Saadati, Reza
    Allahviranloo, Tofigh
    Kiani, Farzad
    Noeiaghdam, Samad
    Fernandez-Gamiz, Unai
    [J]. COMPLEXITY, 2022, 2022
  • [45] Ulam–Hyers Stability for Fractional Differential Equations in Quaternionic Analysis
    Zhan-Peng Yang
    Tian-Zhou Xu
    Min Qi
    [J]. Advances in Applied Clifford Algebras, 2016, 26 : 469 - 478
  • [46] Ulam-Hyers Stability for the Darboux Problem for Partial Fractional Differential and Integro-differential Equations via Picard Operators
    Abbas, Said
    Benchohra, Mouffak
    [J]. RESULTS IN MATHEMATICS, 2014, 65 (1-2) : 67 - 79
  • [47] Ulam-Hyers stability for fuzzy delay differential equation
    Vu, Ho
    Dong, Le Si
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 811 - 824
  • [48] Ulam-Hyers stability of a parabolic partial differential equation
    Marian, Daniela
    Ciplea, Sorina Anamaria
    Lungu, Nicolaie
    [J]. DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 475 - 481
  • [49] Ulam-Hyers stability of Caputo-Hadamard fractional stochastic differential equations with time-delays and impulses
    Tang, Pusen
    Chen, Lin
    Gao, Dongdong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [50] Ulam-Hyers Stability Analysis of a Three-Point Boundary-Value Problem for Fractional Differential Equations
    Ali, A.
    Shah, K.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (02) : 161 - 176