Single-crystal perovskite thin films were prepared by a scalable, one-step, geometrically confined lateral crystal growth (GC-LCG) method on a patterned rolling mold and used for a photovoltaic study. A record solar cell efficiency of 9.50 % under 0.1 sun with an electrode spacing of 1.5 mu m is attained in lateral single-crystal perovskite materials. Moreover, successful integration for high-source-power-generation interdigitated electrode units patterned in series (1x4), parallel (4x1), and combination (4 seriesx4 parallel) configurations is devised and affords maximum efficiencies of 7.99, 8.19, and 7.96 %, respectively. Additionally, the cell performances under various illumination intensities (0.1, 0.2, 0.4, 0.6, 0.8, 1.0 sun) to mimic daily sunshine angles and an indoor environment at 1000 lux are elucidated for which short-circuit current (J(SC)) values (19.60 mA cm(-2) and eta=7.43 %) under 1.0 sun and a significant efficiency of 8.13 % under indoor conditions are obtained. This work represents a significant step towards next-generation, efficient, lateral photovoltaics for possible module integration.