Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering

被引:12
|
作者
Blanco-Portals, Javier [1 ,2 ]
Peiro, Francesca [1 ,2 ]
Estrade, Sonia [1 ,2 ]
机构
[1] Univ Barcelona, Dept Elect & Biomed Engn, LENS MIND, Barcelona 08028, Spain
[2] Univ Barcelona, Inst Nanosci & Nanotechnol IN2UB, Barcelona 08028, Spain
关键词
clustering; dimensionality reduction; EELS; HDBSCAN; UMAP; NONNEGATIVE MATRIX FACTORIZATION; ELECTRON-BEAM DAMAGE; ALGORITHMS; PCA;
D O I
10.1017/S1431927621013696
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core-shell nanoparticle of iron and manganese oxides, as well as the triple combination non-negative matrix factorization-UMAP-HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 50 条
  • [1] Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data
    Yang, Yang
    Sun, Hongjian
    Zhang, Yu
    Zhang, Tiefu
    Gong, Jialei
    Wei, Yunbo
    Duan, Yong-Gang
    Shu, Minglei
    Yang, Yuchen
    Wu, Di
    Yu, Di
    [J]. CELL REPORTS, 2021, 36 (04):
  • [2] Dimensionality reduction and unsupervised clustering for EELS-SI
    Ryu, Jinseok
    Kim, Hyeohn
    Kim, Ryeong Myeong
    Kim, Sungtae
    Jo, Jaeyeon
    Lee, Sangmin
    Nam, Ki Tae
    Joo, Young-Chang
    Yi, Gyu-Chul
    Lee, Jaejin
    Kim, Miyoung
    [J]. ULTRAMICROSCOPY, 2021, 231
  • [3] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [4] Dimensionality reduction for visualizing single-cell data using UMAP
    Etienne Becht
    Leland McInnes
    John Healy
    Charles-Antoine Dutertre
    Immanuel W H Kwok
    Lai Guan Ng
    Florent Ginhoux
    Evan W Newell
    [J]. Nature Biotechnology, 2019, 37 : 38 - 44
  • [5] Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data
    Stolarek, Ireneusz
    Samelak-Czajka, Anna
    Figlerowicz, Marek
    Jackowiak, Paulina
    [J]. ISCIENCE, 2022, 25 (10)
  • [6] Soft dimensionality reduction for reinforcement data clustering
    Fatemeh Fathinezhad
    Peyman Adibi
    Bijan Shoushtarian
    Hamidreza Baradaran Kashani
    Jocelyn Chanussot
    [J]. World Wide Web, 2023, 26 : 3027 - 3054
  • [7] Soft dimensionality reduction for reinforcement data clustering
    Fathinezhad, Fatemeh
    Adibi, Peyman
    Shoushtarian, Bijan
    Baradaran Kashani, Hamidreza
    Chanussot, Jocelyn
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3027 - 3054
  • [8] Analysis of laser ablation spectral data using dimensionality reduction techniques: PCA, t-SNE and UMAP
    Rabasovic, M. S.
    Pavlovic, D. M.
    Sevic, D.
    [J]. CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO, 2023, 53 (03): : 51 - 57
  • [9] Data dimensionality reduction technique for clustering problem of metabolomics data
    Rustam
    Gunawan, Agus Yodi
    Kresnowati, Made Tri Ari Penia
    [J]. HELIYON, 2022, 8 (06)
  • [10] Dimensionality Reduction for Clustering and Cluster Tracking of Cytometry Data
    Putri, Givanna H.
    Read, Mark N.
    Koprinska, Irena
    Ashhurst, Thomas M.
    King, Nicholas J. C.
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 624 - 640