Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data

被引:12
|
作者
Stolarek, Ireneusz [1 ]
Samelak-Czajka, Anna [1 ]
Figlerowicz, Marek [1 ]
Jackowiak, Paulina [1 ]
机构
[1] Polish Acad Sci, Inst Bioorgan Chem, Noskowskiego 12-14, PL-61704 Poznan, Poland
关键词
Automation in bioinformatics; Bioinformatics; Cell biology;
D O I
10.1016/j.isci.2022.105142
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in imaging flow cytometry (IFC) have revolutionized high-throughput multiparameter analyses at single-cell resolution. Although enabling the discovery of population heterogeneities and the detection of rare events, IFC generates hyperdimensional datasets that demand innovative analytical approaches. Current methods work in a supervised manner, utilize only limited information content, or require large annotated reference datasets. Dimensionality reduction algorithms, including uniform manifold approximation and projection (UMAP), have been successfully applied to analyze the large number of parameters generated in various high-throughput techniques. Here, we apply a workflow incorporating UMAP to analyze different IFC datasets. We demonstrate that it out-competes other popular dimensionality reduction methods in speed and accuracy. Moreover, it enables fast visualization, clustering, and tagging of unannotated objects in large-scale experiments. We anticipate that our workflow will be a robust method to address complex IFC datasets, either alone or as an upstream addition to the deep learning approaches.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [2] Dimensionality reduction for visualizing single-cell data using UMAP
    Etienne Becht
    Leland McInnes
    John Healy
    Charles-Antoine Dutertre
    Immanuel W H Kwok
    Lai Guan Ng
    Florent Ginhoux
    Evan W Newell
    [J]. Nature Biotechnology, 2019, 37 : 38 - 44
  • [3] Visualizing dimensionality reduction of systems biology data
    Lehrmann, Andreas
    Huber, Michael
    Polatkan, Aydin C.
    Pritzkau, Albert
    Nieselt, Kay
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 146 - 165
  • [4] Visualizing dimensionality reduction of systems biology data
    Andreas Lehrmann
    Michael Huber
    Aydin C. Polatkan
    Albert Pritzkau
    Kay Nieselt
    [J]. Data Mining and Knowledge Discovery, 2013, 27 : 146 - 165
  • [5] Detecting Rare Cell Populations in Flow Cytometry Data using UMAP
    Weijler, Lisa
    Diem, Markus
    Reiter, Michael
    Maurer-Granofszky, Margarita
    Schumich, Angela
    Dworzak, Michael
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4903 - 4909
  • [6] Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data
    Yang, Yang
    Sun, Hongjian
    Zhang, Yu
    Zhang, Tiefu
    Gong, Jialei
    Wei, Yunbo
    Duan, Yong-Gang
    Shu, Minglei
    Yang, Yuchen
    Wu, Di
    Yu, Di
    [J]. CELL REPORTS, 2021, 36 (04):
  • [7] Dimensionality reduction for visualizing industrial chemical process data
    Joswiak, Mark
    Peng, You
    Castillo, Ivan
    Chiang, Leo H.
    [J]. CONTROL ENGINEERING PRACTICE, 2019, 93
  • [8] Dimensionality Reduction for Clustering and Cluster Tracking of Cytometry Data
    Putri, Givanna H.
    Read, Mark N.
    Koprinska, Irena
    Ashhurst, Thomas M.
    King, Nicholas J. C.
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 624 - 640
  • [9] Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering
    Blanco-Portals, Javier
    Peiro, Francesca
    Estrade, Sonia
    [J]. MICROSCOPY AND MICROANALYSIS, 2022, 28 (01) : 109 - 122
  • [10] An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data
    Fujiwara, Takanori
    Chou, Jia-Kai
    Shilpika
    Xu, Panpan
    Ren, Liu
    Ma, Kwan-Liu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 418 - 428