A Python']Python framework for microphone array data processing

被引:41
|
作者
Sarradj, Ennes [1 ]
Herold, Gert [2 ]
机构
[1] Tech Univ Berlin, Inst Fluid Mech & Engn Acoust, D-10587 Berlin, Germany
[2] Brandenburg Tech Univ Cottbus, Chair Tech Acoust, D-03046 Cottbus, Germany
关键词
Microphone array; Beamforming; !text type='Python']Python[!/text; Software;
D O I
10.1016/j.apacoust.2016.09.015
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoular is an open source object-oriented Python package for microphone array data processing. It supports various methods for sound source characterization and mapping. The background of these methods, which rely on synchronously captured microphone signals, is shortly introduced, and the requirements for a software that implements these methods are discussed. The object-oriented design based on Python allows for easy-to-use scripting and graphical user interfaces, the practical combination with other data handling and scientific computing libraries, and the possibility to extend the software by implementing new processing methods with minimal effort. Built-in result caching and fast C++ based parallelized implementation of core routines is explained. Together with data handling procedures that can accommodate the huge amounts of measured data needed, this makes the application of Acoular to industrial-scale problems possible. Basic examples of Acoular use and extension are given. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 50 条
  • [41] PySAP: Python']Python Sparse Data Analysis Package for multidisciplinary image processing
    Farrens, S.
    Grigis, A.
    El Gueddari, L.
    Ramzi, Z.
    Chaithya, G. R.
    Starck, S.
    Sarthou, B.
    Cherkaoui, H.
    Ciuciu, P.
    Starck, J-L
    [J]. ASTRONOMY AND COMPUTING, 2020, 32
  • [42] Python']Python Data Driven framework for acceleration of Phase-Field simulations
    Fetni, Seifallah
    Delahaye, Jocelyn
    Habraken, Anne Marie
    [J]. SOFTWARE IMPACTS, 2023, 17
  • [43] Razorback, an Open Source Python']Python Library for Robust Processing of Magnetotelluric Data
    Smai, Farid
    Wawrzyniak, Pierre
    [J]. FRONTIERS IN EARTH SCIENCE, 2020, 8
  • [44] PYMEF - A FRAMEWORK FOR EXPONENTIAL FAMILIES IN PYTHON']PYTHON
    Schwander, Olivier
    Nielsen, Frank
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 669 - 672
  • [45] DISROPT: a Python']Python Framework for Distributed Optimization
    Farina, Francesco
    Camisa, Andrea
    Testa, Andrea
    Notarnicola, Ivano
    Notarstefano, Giuseppe
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 2666 - 2671
  • [46] A Python']Python surrogate modeling framework with derivatives
    Bouhlel, Mohamed Amine
    Hwang, John T.
    Bartoli, Nathalie
    Lafage, Remi
    Morlier, Joseph
    Martins, Joaquim R. R. A.
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2019, 135
  • [47] FRED 2: an immunoinformatics framework for Python']Python
    Schubert, Benjamin
    Walzer, Mathias
    Brachvogel, Hans-Philipp
    Szolek, Andras
    Mohr, Christopher
    Kohlbacher, Oliver
    [J]. BIOINFORMATICS, 2016, 32 (13) : 2044 - 2046
  • [48] USING PYTHON']PYTHON FOR SIGNAL PROCESSING AND VISUALIZATION
    Anderson, Erik W.
    Preston, Gilbert A.
    Silva, Claudio T.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2010, 12 (04) : 90 - 95
  • [49] CSB: a Python']Python framework for structural bioinformatics
    Kalev, Ivan
    Mechelke, Martin
    Kopec, Klaus O.
    Holder, Thomas
    Carstens, Simeon
    Habeck, Michael
    [J]. BIOINFORMATICS, 2012, 28 (22) : 2996 - 2997
  • [50] pyVHR: a Python']Python framework for remote photoplethysmography
    Boccignone, Giuseppe
    Conte, Donatello
    Cuculo, Vittorio
    D'Amelio, Alessandro
    Grossi, Giuliano
    Lanzarotti, Raffaella
    Mortara, Edoardo
    [J]. PEERJ COMPUTER SCIENCE, 2022, 8 : 1 - 37