Magnetic collapse and the behavior of transition metal oxides at high pressure

被引:49
|
作者
Leonov, I. [1 ,2 ]
Pourovskii, L. [2 ,3 ,4 ]
Georges, A. [3 ,4 ,5 ]
Abrikosov, I. A. [2 ,6 ]
机构
[1] Univ Augsburg, Ctr Elect Correlat & Magnetism, Inst Phys, Theoret Phys 3, D-86135 Augsburg, Germany
[2] Natl Univ Sci & Technol MISIS, Mat Modeling & Dev Lab, Moscow 119049, Russia
[3] Univ Paris Saclay, CNRS, Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[4] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[5] Univ Geneva, DQMP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
[6] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
基金
欧洲研究理事会; 瑞士国家科学基金会; 瑞典研究理事会;
关键词
MEAN-FIELD THEORY; STRONGLY CORRELATED MATERIALS; INSULATOR-TRANSITION; WANNIER-FUNCTIONS; ELECTRONIC-STRUCTURE; MOTT TRANSITION; BAND-STRUCTURE; LOWER MANTLE; SPECTRA; SYSTEMS;
D O I
10.1103/PhysRevB.94.155135
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a detail theoretical study of the electronic structure and phase stability of transition metal oxides MnO, FeO, CoO, and NiO in their paramagnetic cubic B1 structure by employing dynamical mean-field theory of correlated electrons combined with ab initio band-structure methods. Our calculations reveal that under pressure these materials exhibit a Mott insulator-metal transition (IMT) which is accompanied by a simultaneous collapse of local magnetic moments and lattice volume, implying a complex interplay between chemical bonding and electronic correlations. Moreover, our results for the transition pressure show a monotonous decrease from similar to 145 to 40 GPa, upon moving from MnO to CoO. In contrast to that, in NiO, magnetic collapse is found to occur at a remarkably higher pressure of similar to 429 GPa. We provide a unified picture of such a behavior and suggest that it is primarily a localized to itinerant moment behavior transition at the IMT that gives rise to magnetic collapse in transition metal oxides.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Ferromagnetism in cluster free, transition metal doped high κ dilute magnetic oxides: Films and nanocrystals
    Wu, C. N.
    Wu, T. S.
    Huang, S. Y.
    Lee, W. C.
    Chang, Y. H.
    Soo, Y. L.
    Hong, M.
    Kwo, J.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (17)
  • [32] Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal oxides
    Castel, Vincent
    Brosseau, Christian
    PHYSICAL REVIEW B, 2008, 77 (13)
  • [33] On magnetic collapse in solid oxygen under high pressure
    Kalita, VM
    Loktev, VM
    LOW TEMPERATURE PHYSICS, 2006, 32 (03) : 236 - 240
  • [34] Magnetic order in transition metal oxides with orbital degrees of freedom
    Oles, AM
    ACTA PHYSICA POLONICA B, 2001, 32 (10): : 3303 - 3311
  • [35] Magnetic order in transition metal oxides with orbital degrees of freedom
    Radwanski, RJ
    Ropka, Z
    ACTA PHYSICA POLONICA B, 2004, 35 (10): : 2519 - 2520
  • [36] Crystal and magnetic order in nanosized transition-metal oxides
    Krezhov, K.
    Svab, E.
    Meszaros, Gy.
    Bouree, F.
    Somogyvari, Z.
    Konstantinov, P.
    Nedkov, I.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S104 - S104
  • [37] LINEAR MAGNETIC BIREFRINGENCE IN TRANSITION-METAL OXIDES - COO
    GERMANN, KH
    MAIER, K
    STRAUSS, E
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1974, 61 (02): : 449 - 454
  • [38] Magnetic interactions in transition metal oxides with orbital degrees of freedom
    Oles, AM
    HIGHLIGHTS IN CONDENSED MATTER PHYSICS, 2003, 695 : 176 - 187
  • [39] Spectroscopic studies of metal high-k dielectrics:: transition metal oxides and silicates, and complex rare earth/transition metal oxides
    Lucovsky, G
    Hong, JG
    Fulton, CC
    Zou, Y
    Nemanich, RJ
    Ade, H
    Scholm, DG
    Freeouf, JL
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (10): : 2221 - 2235
  • [40] Transition metal oxides
    Wahibeck, P.G.
    Journal of the American Chemical Society, 1996, 118 (04):