Emotion Recognition from Multimodal Physiological Signals for Emotion Aware Healthcare Systems

被引:72
|
作者
Ayata, Deger [1 ]
Yaslan, Yusuf [1 ]
Kamasak, Mustafa E. [1 ]
机构
[1] Istanbul Tech Univ, Fac Comp & Informat Engn, Istanbul, Turkey
关键词
Physiological data; Emotion recognition; Multi-sensor data fusion; RELEVANCE;
D O I
10.1007/s40846-019-00505-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose The purpose of this paper is to propose a novel emotion recognition algorithm from multimodal physiological signals for emotion aware healthcare systems. In this work, physiological signals are collected from a respiratory belt (RB), photoplethysmography (PPG), and fingertip temperature (FTT) sensors. These signals are used as their collection becomes easy with the advance in ergonomic wearable technologies. Methods Arousal and valence levels are recognized from the fused physiological signals using the relationship between physiological signals and emotions. This recognition is performed using various machine learning methods such as random forest, support vector machine and logistic regression. The performance of these methods is studied. Results Using decision level fusion, the accuracy improved from 69.86 to 73.08% for arousal, and from 69.53 to 72.18% for valence. Results indicate that using multiple sources of physiological signals and their fusion increases the accuracy rate of emotion recognition. Conclusion This study demonstrated a framework for emotion recognition using multimodal physiological signals from respiratory belt, photo plethysmography and fingertip temperature. It is shown that decision level fusion from multiple classifiers (one per signal source) improved the accuracy rate of emotion recognition both for arousal and valence dimensions.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 50 条
  • [11] Incongruity-aware multimodal physiology signals fusion for emotion recognition
    Li, Jing
    Chen, Ning
    Zhu, Hongqing
    Li, Guangqiang
    Xu, Zhangyong
    Chen, Dingxin
    INFORMATION FUSION, 2024, 105
  • [12] Multimodal Emotion Recognition Using Visual, Vocal and Physiological Signals: A Review
    Udahemuka, Gustave
    Djouani, Karim
    Kurien, Anish M.
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [13] Emotion recognition based on a limited number of multimodal physiological signals channels
    Wan, Chunting
    Xu, Chuanpei
    Chen, Dongyi
    Wei, Daohong
    Li, Xiang
    MEASUREMENT, 2025, 242
  • [14] Deep Representation Learning for Multimodal Emotion Recognition Using Physiological Signals
    Zubair, Muhammad
    Woo, Sungpil
    Lim, Sunhwan
    Yoon, Changwoo
    IEEE ACCESS, 2024, 12 : 106605 - 106617
  • [15] Feature-Level Fusion of Multimodal Physiological Signals for Emotion Recognition
    Chen, Jing
    Ru, Bin
    Xu, Lixin
    Moore, Philip
    Su, Yun
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 395 - 399
  • [16] Multimodal machine learning approach for emotion recognition using physiological signals
    Ramadan, Mohamad A.
    Salem, Nancy M.
    Mahmoud, Lamees N.
    Sadek, Ibrahim
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [17] Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals
    Verma, Gyanendra K.
    Tiwary, Uma Shanker
    NEUROIMAGE, 2014, 102 : 162 - 172
  • [18] Using Physiological Signals for Emotion Recognition
    Szwoch, Wioleta
    2013 6TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTIONS (HSI), 2013, : 556 - 561
  • [19] Emotion recognition using physiological signals
    Li, Lan
    Chen, Ji-hua
    ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 437 - +
  • [20] Emotion Recognition Using Physiological Signals
    Szwoch, Wioleta
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA, INTERACTION, DESIGN AND INNOVATION, 2015,