Null-controllability of non-autonomous Ornstein-Uhlenbeck equations

被引:10
|
作者
Beauchard, Karine [1 ]
Pravda-Starov, Karel [2 ]
机构
[1] UBL, IRMAR, Ecole Normale Super Rennes, CNRS, Campus Ker Lann, F-35170 Bruz, France
[2] Univ Rennes 1, IRMAR, CNRS UMR 6625, Campus Beaulieu,263 Ave Gen Leclerc,CS 74205, F-35042 Rennes, France
关键词
Null-controllability; Observability; Non-autonomous; Ornstein-Uhlenbeck operators; Gevrey regularity; Kalman type condition; DEGENERATE PARABOLIC OPERATORS; HEAT-EQUATION;
D O I
10.1016/j.jmaa.2017.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the null-controllability of parabolic equations associated to non autonomous Ornstein Uhlenbeck operators. When a Kalman type condition holds for some positive time T > 0, these parabolic equations are shown to enjoy a Gevrey regularizing effect at time T > 0. Thanks to this regularizing effect, we prove by adapting the Lebeau Robbiano method that these parabolic equations are null controllable in time T > 0 from control regions, for which null-controllability is classically known to hold in the case of the heat equation. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:496 / 524
页数:29
相关论文
共 50 条
  • [21] Centre-of-Mass Like Superposition of Ornstein–Uhlenbeck Processes: A Pathway to Non-Autonomous Stochastic Differential Equations and to Fractional Diffusion
    Mirko D’Ovidio
    Silvia Vitali
    Vittoria Sposini
    Oleksii Sliusarenko
    Paolo Paradisi
    Gastone Castellani
    Pagnini Gianni
    [J]. Fractional Calculus and Applied Analysis, 2018, 21 : 1420 - 1435
  • [22] Exact boundary controllability for non-autonomous quasilinear wave equations
    Wang, Zhiqiang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (11) : 1311 - 1327
  • [23] OBSERVABILITY AND NULL-CONTROLLABILITY FOR PARABOLIC EQUATIONS IN Lp-SPACES
    Bombach, Clemens
    Gallaun, Dennis
    Seifert, Christian
    Tautenhahn, Martin
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2023, 13 (04) : 1484 - 1499
  • [24] Boundary null-controllability of linear diffusion-reaction equations
    Hamdi, Adel
    Mahfoudhi, Imed
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (19-20) : 1083 - 1086
  • [25] On the Stability and Null-Controllability of an Infinite System of Linear Differential Equations
    Azamov, Abdulla
    Ibragimov, Gafurjan
    Mamayusupov, Khudoyor
    Ruziboev, Marks
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 595 - 605
  • [26] On the Cauchy problem for non-local Ornstein-Uhlenbeck operators
    Priola, E.
    Traca, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 : 182 - 205
  • [27] Ornstein-Uhlenbeck type processes with non-normal distribution
    Jensen, JL
    Pedersen, J
    [J]. JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) : 389 - 402
  • [28] On the Stability and Null-Controllability of an Infinite System of Linear Differential Equations
    Abdulla Azamov
    Gafurjan Ibragimov
    Khudoyor Mamayusupov
    Marks Ruziboev
    [J]. Journal of Dynamical and Control Systems, 2023, 29 : 595 - 605
  • [29] LACK OF NULL-CONTROLLABILITY FOR THE FRACTIONAL HEAT EQUATION AND RELATED EQUATIONS
    Koenig, Armand
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (06) : 3130 - 3160
  • [30] Non-maturing deposits modelling in a Ornstein-Uhlenbeck framework
    Marena, Marina
    Romeo, Andrea
    Semeraro, Patrizia
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2023, 39 (04) : 536 - 548