Null-controllability of non-autonomous Ornstein-Uhlenbeck equations

被引:10
|
作者
Beauchard, Karine [1 ]
Pravda-Starov, Karel [2 ]
机构
[1] UBL, IRMAR, Ecole Normale Super Rennes, CNRS, Campus Ker Lann, F-35170 Bruz, France
[2] Univ Rennes 1, IRMAR, CNRS UMR 6625, Campus Beaulieu,263 Ave Gen Leclerc,CS 74205, F-35042 Rennes, France
关键词
Null-controllability; Observability; Non-autonomous; Ornstein-Uhlenbeck operators; Gevrey regularity; Kalman type condition; DEGENERATE PARABOLIC OPERATORS; HEAT-EQUATION;
D O I
10.1016/j.jmaa.2017.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the null-controllability of parabolic equations associated to non autonomous Ornstein Uhlenbeck operators. When a Kalman type condition holds for some positive time T > 0, these parabolic equations are shown to enjoy a Gevrey regularizing effect at time T > 0. Thanks to this regularizing effect, we prove by adapting the Lebeau Robbiano method that these parabolic equations are null controllable in time T > 0 from control regions, for which null-controllability is classically known to hold in the case of the heat equation. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:496 / 524
页数:29
相关论文
共 50 条
  • [1] APPROXIMATE NULL-CONTROLLABILITY WITH UNIFORM COST FOR THE HYPOELLIPTIC ORNSTEIN-UHLENBECK EQUATIONS
    Alphonse, Paul
    Martin, Jeemy
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (03) : 1679 - 1711
  • [2] NON-AUTONOMOUS ORNSTEIN-UHLENBECK EQUATIONS IN EXTERIOR DOMAINS
    Hansel, Tobias
    Rhandi, Ahdelaziz
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) : 201 - 220
  • [3] Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability
    Alphonse, Paul
    Bernier, Joackim
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 165
  • [4] Asymptotic behavior and hypercontractivity in non-autonomous Ornstein-Uhlenbeck equations
    Geissert, Matthias
    Lunardi, Alessandra
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 85 - 106
  • [5] Controllability of the Ornstein-Uhlenbeck equation
    Barcenas, Diomedes
    Leiva, Hugo
    Urbina, Wilfredo
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2006, 23 (01) : 1 - 9
  • [6] CENTRE-OF-MASS LIKE SUPERPOSITION OF ORNSTEIN-UHLENBECK PROCESSES: A PATHWAY TO NON-AUTONOMOUS STOCHASTIC DIFFERENTIAL EQUATIONS AND TO FRACTIONAL DIFFUSION
    D'Ovidio, Mirko
    Vitali, Silvia
    Sposini, Vittoria
    Sliusarenko, Oleksii
    Paradisi, Paolo
    Castellani, Gastone
    Pagnini, Gianni
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1420 - 1435
  • [7] ON THE NULL-CONTROLLABILITY OF DIFFUSION EQUATIONS
    Tenenbaum, Gerald
    Tucsnak, Marius
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (04) : 1088 - 1100
  • [8] A Stochastic Non-autonomous Chemostat Model with Mean-reverting Ornstein-Uhlenbeck Process on the Washout Rate
    Zhang, Xiaofeng
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1819 - 1849
  • [9] Kolmogorov Equations for Degenerate Ornstein-Uhlenbeck Operators
    Bogachev, V. I.
    Shaposhnikov, S. V.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (01) : 21 - 29
  • [10] NULL-CONTROLLABILITY OF HYPOELLIPTIC QUADRATIC DIFFERENTIAL EQUATIONS
    Beauchard, Karine
    Pravda-Starov, Karel
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 1 - 43