An Energy-Efficient Deep Neural Network Accelerator Design

被引:0
|
作者
Jung, Jueun [1 ]
Lee, Kyuho Jason [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Elect Engn, Ulsan, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; deep neural network; convolutional neural network; digital accelerator; ASIC;
D O I
10.1109/IEEECONF51394.2020.9443508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an energy-efficient design method for Deep Neural Network (DNN) accelerator. Although GPU is widely used for DNN acceleration, its huge power consumption limits practical usage on mobile devices. Recent DNN accelerators are dedicated to high energy-efficiency to realize real-time DNN acceleration with low power consumption. But a hardware-oriented algorithm is essential for realistic implementation. Therefore, various techniques of network compression are applied with the DNN accelerators that utilize several schemes to reduce computational complexity in trade of accuracy loss. This work studies the optimization schemes and presents a DNN accelerator architecture by hardware-software co-optimization.
引用
收藏
页码:272 / 276
页数:5
相关论文
共 50 条
  • [1] Ascend: A Scalable and Energy-Efficient Deep Neural Network Accelerator With Photonic Interconnects
    Li, Yuan
    Wang, Ke
    Zheng, Hao
    Louri, Ahmed
    Karanth, Avinash
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (07) : 2730 - 2741
  • [2] Energy-Efficient Bit-Sparse Accelerator Design for Convolutional Neural Network
    Xiao, Hang
    Xu, Haobo
    Wang, Ying
    Li, Jiajun
    Wang, Yujie
    Han, Yinhe
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (07): : 1122 - 1131
  • [3] UNPU: An Energy-Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit Precision
    Lee, Jinmook
    Kim, Changhyeon
    Kang, Sanghoon
    Shin, Dongjoo
    Kim, Sangyeob
    Yoo, Hoi-Jun
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) : 173 - 185
  • [4] An Energy-Efficient Deep Convolutional Neural Network Training Accelerator for In Situ Personalization on Smart Devices
    Choi, Seungkyu
    Sim, Jaehyeong
    Kang, Myeonggu
    Choi, Yeongjae
    Kim, Hyeonuk
    Kim, Lee-Sup
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (10) : 2691 - 2702
  • [5] SONIC: A Sparse Neural Network Inference Accelerator with Silicon Photonics for Energy-Efficient Deep Learning
    Sunny, Febin
    Nikdast, Mandi
    Pasricha, Sudeep
    [J]. 27TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2022, 2022, : 214 - 219
  • [6] Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks
    Chen, Yu-Hsin
    Krishna, Tushar
    Emer, Joel
    Sze, Vivienne
    [J]. 2016 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2016, 59 : 262 - U363
  • [7] Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks
    Chen, Yu-Hsin
    Krishna, Tushar
    Emer, Joel S.
    Sze, Vivienne
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (01) : 127 - 138
  • [8] Design framework for an energy-efficient binary convolutional neural network accelerator based on nonvolatile logic
    Suzuki, Daisuke
    Oka, Takahiro
    Tamakoshi, Akira
    Takako, Yasuhiro
    Hanyu, Takahiro
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2021, 12 (04): : 695 - 710
  • [9] A Precision-Scalable Energy-Efficient Convolutional Neural Network Accelerator
    Liu, Wenjian
    Lin, Jun
    Wang, Zhongfeng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (10) : 3484 - 3497
  • [10] An Energy-Efficient Accelerator for Rain Removal Based on Convolutional Neural Network
    Rao, Lei
    Zhang, Bin
    Zhao, Jizhong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 2957 - 2961