Edge-connectivity and edge-superconnectivity in sequence graphs

被引:0
|
作者
Balbuena, C.
Fabrega, J.
Garcia-Vazquez, P.
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
[2] Univ Politecn Catalunya, Dept Matemat Aplicada 4, E-08034 Barcelona, Spain
[3] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
基金
俄罗斯基础研究基金会;
关键词
edge-connectivity; edge-superconnectivity; line graphs; sequence graphs;
D O I
10.1016/j.dam.2007.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer k >=, I and any graph G, the sequence graph S-k (G) is the graph whose set of vertices is the set of all walks of length k in G. Moreover, two vertices of S-k (G) are joined by an edge if and only if their corresponding walks are adjacent in G. In this paper we prove sufficient conditions for a sequence graph S-k (G) to be maximally edge-connected and edge-superconnected depending on the parity of k and on the vertex-connectivity of the original graph G. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2053 / 2060
页数:8
相关论文
共 50 条
  • [11] Edge-connectivity and super edge-connectivity of P2-path graphs
    Balbuena, C
    Ferrero, D
    [J]. DISCRETE MATHEMATICS, 2003, 269 (1-3) : 13 - 20
  • [12] On restricted edge-connectivity of graphs
    Xu , JM
    Xu, KL
    [J]. DISCRETE MATHEMATICS, 2002, 243 (1-3) : 291 - 298
  • [13] On the Edge-Connectivity and Restricted Edge-Connectivity of Optimal 1-Planar Graphs
    Licheng Zhang
    Yuanqiu Huang
    Guiping Wang
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [14] Game edge-connectivity of graphs
    Matsumoto, Naoki
    Nakamigawa, Tomoki
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 298 : 155 - 164
  • [15] On the Edge-Connectivity and Restricted Edge-Connectivity of Optimal 1-Planar Graphs
    Zhang, Licheng
    Huang, Yuanqiu
    Wang, Guiping
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [16] ON EDGE-CONNECTIVITY AND SUPER EDGE-CONNECTIVITY OF INTERCONNECTION NETWORKS MODELED BY PRODUCT GRAPHS
    Wang, Chunxiang
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2010, 2 (02) : 143 - 150
  • [17] Average connectivity and average edge-connectivity in graphs
    Kim, Jaehoon
    Suil, O.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (20) : 2232 - 2238
  • [18] ON THE EDGE-CONNECTIVITY OF CARTESIAN PRODUCT GRAPHS
    Klavzar, Sandi
    Spacapan, Simon
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (01) : 93 - 98
  • [19] Average Edge-Connectivity of Cubic Graphs
    Zhuo, Miaomiao
    Li, Qinqin
    Wu, Baoyindureng
    An, Xinhui
    [J]. JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (04)
  • [20] On cyclic edge-connectivity of transitive graphs
    Wang, Bing
    Zhang, Zhao
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4555 - 4563