Efficient PEDOT Electrode Architecture for Continuous Redox-Flow Desalination

被引:22
|
作者
Ramalingam, Karthick [1 ,2 ]
Zhu, Yuchao [1 ]
Wang, Jian [1 ]
Liang, Mengjun [1 ]
Wei, Qiang [1 ]
Chen, Xuncai [3 ]
Sun, Fei [4 ]
Chen, Deyang [4 ]
Zhang, Zhang [4 ]
Aung, Su Htike [5 ]
Oo, Than Zaw [5 ,6 ]
Chen, Fuming [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Engn Technol Res Ctr Efficient Green En, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Elect & Informat Engn, Foshan 528225, Peoples R China
[3] Southern Med Univ, Sch Forens Med, Dept Forens Toxicol, Guangzhou 510515, Peoples R China
[4] South China Normal Univ, South China Acad Adv Optoelect, Inst Adv Mat, Guangzhou 510006, Peoples R China
[5] Univ Mandalay, Dept Phys, Mat Res Lab, Mandalay 05032, Myanmar
[6] Univ Yangon, Ctr Res & Innovat, Yangon 11041, Myanmar
基金
中国国家自然科学基金;
关键词
continuous desalination; electrochemical desalination; PEDOT; redox-flow desalination; energy consumption; CAPACITIVE DEIONIZATION; CONDUCTING POLYMERS; ENERGY-CONVERSION; WATER-TREATMENT; SALT; CDI;
D O I
10.1021/acssuschemeng.1c03263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Both low-energy consumption and high salt removal rate are highly required in the electrochemical desalination. In this work, a conducting polymer poly(3,4-ethylene-dioxythiophene), i.e., PEDOT, is electrochemically decorated on a graphite foil as an electrode material of redox-flow desalination (RFD). At a current density of 2 mA.cm(-2), the energy consumption of the RFD is reduced to 38.1 kJ.mol(-1) with PEDOT-modified electrodes, compared with 154.5 kJ.mol(-1) using a bare graphite electrode. Meanwhile, the salt removal rate is enhanced to 1.54 mu mol.cm(-2).min(-1) using the PEDOT electrode from 1.11 mu mol.cm(-2).min(-1) in the bare graphite electrode. The PEDOT electrodes can also provide excellent cycling stability. The improved performance may be due to the promising conductivity and porous structure of PEDOT, which would supply more active sites between the electrode and the redox electrolyte. The current research provides an electrochemical desalination strategy with low energy consumption and high salt removal rate, which is significant for the development of RFD technology.
引用
收藏
页码:12779 / 12787
页数:9
相关论文
共 50 条
  • [31] Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination
    Zhang, Changyong
    Wu, Lei
    Ma, Jinxing
    Pham, A. Ninh
    Wang, Min
    Waite, T. David
    Environmental Science and Technology, 2019,
  • [32] Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination
    Zhang, Changyong
    Wu, Lei
    Ma, Jinxing
    Ninh Pham, A.
    Wang, Min
    Waite, T. David
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (22) : 13364 - 13373
  • [33] Continuous desalination and high-density energy storage: Na metal hybrid redox flow desalination battery
    Kim, Namhyeok
    Kim, Chang-Min
    Park, Sanghoon
    Park, Jiyoung
    Cho, Kyung Hwa
    Kim, Youngsik
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [34] New insights into the performance analysis of flow-electrode capacitive deionization using ferri/ferrocyanide redox couples for continuous water desalination
    Mani, Satheesh
    Thangapandi, Balaji
    Elangovan, Praveenraj
    Prakash, Athira
    Subbaiah, Ravichandran
    Vasudevan, Subramanyan
    Rajendran, Malini
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [35] Single module flow-electrode capacitive deionization for continuous water desalination
    Rommerskirchen, Alexandra
    Gendel, Youri
    Wessling, Matthias
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 : 34 - 37
  • [36] Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor
    Ryu, KS
    Lee, YG
    Hong, YS
    Park, YJ
    Wu, XL
    Kim, KM
    Kang, MG
    Park, NG
    Chang, SH
    ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 843 - 847
  • [37] Iron-based catholytes for aqueous redox-flow batteries
    Okazawa, Atsushi
    Kakuchi, Takayuki
    Kawai, Kosuke
    Okubo, Masashi
    APL MATERIALS, 2023, 11 (11)
  • [38] Polyacrylonitrile-Based Membranes for Aqueous Redox-Flow Batteries
    Karpushkin, E. A.
    Klimenko, M. M.
    Gvozdik, N. A.
    Stevenson, K. J.
    Sergeyev, V. G.
    SELECTED PROCEEDINGS FROM THE 231ST ECS MEETING, 2017, 77 (11): : 163 - 171
  • [39] Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries
    Steen, Jelte S.
    Nuismer, Jules L.
    Eiva, Vytautas
    Wiglema, Albert E. T.
    Daub, Nicolas
    Hjelm, Johan
    Otten, Edwin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (11) : 5051 - 5058
  • [40] A redox-flow battery with an alloxazine-based organic electrolyte
    Lin K.
    Gómez-Bombarelli R.
    Beh E.S.
    Tong L.
    Chen Q.
    Valle A.
    Aspuru-Guzik A.
    Aziz M.J.
    Gordon R.G.
    Nature Energy, 1 (9)