Monolithically integrated micro flow sensor for lab-on-chip applications

被引:23
|
作者
Schöler, L
Lange, B
Seibel, K
Schäfer, H
Walder, M
Friedrich, N
Ehrhardt, D
Schönfeld, F
Zech, G
Böhm, M
机构
[1] Univ Siegen, Inst Microsyst Technol, D-57068 Siegen, Germany
[2] Inst Mikrotech Mainz GmbH, D-55129 Mainz, Germany
[3] Univ Siegen, Dept Phys, D-57068 Siegen, Germany
关键词
lab-on-chip; microfluidics; mass flow sensor;
D O I
10.1016/j.mee.2004.12.022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A monolithically integrated micro flow sensor (MFS) for lab-on-chip application is presented. The MFS utilizes a miniaturized adaption of the anemometric principle. The combination of an established detection principle with the benefits of microtechnology results in a sensor with very high sensitivity. The temperature distribution in the microfluidic channel is simulated and compared with experimental results. The experimental investigation confirms that the micro MFS is able to detect flow rates as low as 10 nl/min. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 170
页数:7
相关论文
共 50 条
  • [31] Integrated silicon-glass opto-chemical sensors for lab-on-chip applications
    De Stefano, L
    Malecki, K
    Rossi, AM
    Rotiroti, L
    Della Corte, FG
    Moretti, L
    Rendina, I
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (02): : 625 - 630
  • [32] Silicon plasmonic integrated interferometer sensor for lab on chip applications
    Ayoub, Ahmad B.
    Ji, Dengxin
    Gan, Qiaoqiang
    Swillam, Mohamed A.
    OPTICS COMMUNICATIONS, 2018, 427 : 319 - 325
  • [33] Inkjet Printing for Applications in Microfluidic Lab-on-Chip Systems
    Beckert, Erik
    Pabst, Oliver
    Perelaer, Jolke
    Schubert, Ulrich S.
    Eberhardt, Ramona
    Tuennermann, Andreas
    NIP28: 28TH INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES / DIGITAL FABRICATION 2012, 2012, : 557 - 560
  • [34] Multifunctional System-on-Glass for Lab-on-Chip applications
    Petrucci, G.
    Caputo, D.
    Lovecchio, N.
    Costantini, F.
    Legnini, I.
    Bozzoni, I.
    Nascetti, A.
    de Cesare, G.
    BIOSENSORS & BIOELECTRONICS, 2017, 93 : 315 - 321
  • [35] A solvent resistant lab-on-chip platform for radiochemistry applications
    Rensch, Christian
    Lindner, Simon
    Salvamoser, Ruben
    Leidner, Stephanie
    Boeld, Christoph
    Samper, Victor
    Taylor, David
    Baller, Marko
    Riese, Stefan
    Bartenstein, Peter
    Waengler, Carmen
    Waengler, Bjoern
    LAB ON A CHIP, 2014, 14 (14) : 2556 - 2564
  • [36] Handling droplets in 3 dimensions for lab-on-chip applications
    Roux, JM
    Fouillet, Y
    Achard, JL
    Micro Total Analysis Systems 2004, Vol 1, 2005, (296): : 581 - 583
  • [37] Optofluidic Lab-on-chip Platform for Realtime Sensing Applications
    Zverev, Aleksandr V.
    Ivanov, Anton I.
    Pishimova, Anastasiya A.
    Andronik, Mikhail
    Echeistov, Vladimir V.
    Mikhailov, Stanislav A.
    Ryzhikov, Ilya A.
    Rodionov, Ilya A.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 1267 - 1272
  • [38] Lab-on-chip platforms for biological analysis - applications in agrofood
    Conde, J. P.
    FEBS OPEN BIO, 2022, 12 : 28 - 28
  • [39] Electro-optical detector for lab-on-chip applications
    de Cesare, Giampiero
    Asquini, Rita
    Buzzin, Alessio
    Caputo, Domenico
    2017 7TH IEEE INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES (IWASI), 2017, : 203 - 206
  • [40] Integrated 240 GHz Dielectric Sensor with DC Readout Circuit in THz Lab-on-Chip Measurements
    Wang, Defu
    Schmalz, Klaus
    Eissa, Mohamed H.
    Borngraeber, Johannes
    Kucharski, Maciej
    Elkhouly, Mohamed
    Jamal, Farabi I.
    Ko, Minsu
    Ng, Herman J.
    Kissinger, Dietmar
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 1524 - 1526