Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

被引:6
|
作者
Wu, Zehan [1 ]
Xie, Tao [2 ]
Yao, Lin [3 ]
Zhang, Dingguo [2 ]
Sheng, Xinjun [2 ]
Farina, Dario [4 ]
Chen, Liang [1 ]
Mao, Ying [1 ]
Zhu, Xiangyang [2 ]
机构
[1] Fudan Univ, Huashan Hosp, Dept Neurosurg, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
[3] Univ Waterloo, Dept Syst Design Engn, Fac Engn, Waterloo, ON, Canada
[4] Imperial Coll London, Dept Bioengn, London, England
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
基金
中国国家自然科学基金;
关键词
intraoperative; electrocorticography (ECoG); motor cortex mapping; movement-related cortical potentials (MRCP); VOLUNTARY MOVEMENTS; FINGER MOVEMENTS; LANGUAGE CORTEX; DESYNCHRONIZATION; OSCILLATIONS; HUMANS; AREA; EPILEPSY; IMAGERY; TASKS;
D O I
10.3389/fnins.2017.00326
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We propose electrocorticographic temporal alteration mapping (ETAM) for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs) within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM), which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases) were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS) procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8%) and specificity (94.3%) in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%). These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] MOVEMENT-RELATED CORTICAL POTENTIALS - THEIR RELATIONSHIP TO THE LATERALITY, COMPLEXITY AND LEARNING OF A MOVEMENT
    DEMIRALP, T
    KARAMURSEL, S
    KARAKULLUKCU, YE
    GOKHAN, N
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1990, 51 (1-2) : 153 - 162
  • [32] Alteration and recovery of movement-related potentials in the temporal course after prefrontal traumatic brain injury
    Wiesel, H.
    Studel, P.
    Nebel, K.
    Diener, H. C.
    Keidel, M.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2006, 61 (03) : 306 - 307
  • [33] The relationships between movement-related cortical potentials and motor unit activity during muscle contraction
    Shibata, M
    Oda, S
    Moritani, T
    JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 1997, 7 (02) : 79 - 85
  • [34] Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials
    G. Dirnberger
    M. Reumann
    W. Endl
    G. Lindinger
    W. Lang
    J. C. Rothwell
    Experimental Brain Research, 2000, 135 : 231 - 240
  • [35] Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials
    Dirnberger, G
    Reumann, M
    Endl, W
    Lindinger, G
    Lang, W
    Rothwell, JC
    EXPERIMENTAL BRAIN RESEARCH, 2000, 135 (02) : 231 - 240
  • [36] Movement-related cortical potentials accompanying mandibular movements.
    Yoshida, K
    Hamano, T
    Kaji, R
    Kimura, J
    Uzuka, T
    JOURNAL OF DENTAL RESEARCH, 1997, 76 : 131 - 131
  • [37] Identification of task parameters from movement-related cortical potentials
    Ying Gu
    Omar Feix do Nascimento
    Marie-Françoise Lucas
    Dario Farina
    Medical & Biological Engineering & Computing, 2009, 47 : 1257 - 1264
  • [38] MOVEMENT-RELATED CORTICAL POTENTIALS TO FINGER SEQUENCES OF INCREASING COMPLEXITY
    KATSUTA, H
    TORO, C
    SADATO, N
    HALLETT, M
    NEUROLOGY, 1995, 45 (04) : A212 - A212
  • [39] Force-dependent changes in movement-related cortical potentials
    Oda, S
    Shibata, M
    Moritani, T
    JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 1996, 6 (04) : 247 - 252
  • [40] Identification of task parameters from movement-related cortical potentials
    Gu, Ying
    do Nascimento, Omar Feix
    Lucas, Marie-Francoise
    Farina, Dario
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2009, 47 (12) : 1257 - 1264