Seismic vibration control of an innovative self-centering damper using confined SMA core

被引:9
|
作者
Qiu, Canxing [1 ]
Gong, Zhaohui [2 ]
Peng, Changle [2 ]
Li, Han [2 ]
机构
[1] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
[2] Shandong Univ, Sch Civil Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
shape memory alloy; experimental test; seismic analysis; vibration control; SHAPE-MEMORY ALLOYS; BRACED FRAME BUILDINGS; CYCLIC PROPERTIES; STEEL FRAMES; PERFORMANCE; BEHAVIOR; DESIGN; TENSION; COMPRESSION; WIRES;
D O I
10.12989/sss.2020.25.2.241
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 50 条
  • [1] SEISMIC DESIGN OPTIMIZATION OF FRAME STRUCTURE WITH SELF-CENTERING SMA FRICTION DAMPER
    Han M.
    Chang Z.-Q.
    Xing G.-H.
    Liu B.-Q.
    Jin Q.-K.
    Lyu W.-J.
    Gongcheng Lixue/Engineering Mechanics, 2023, 40 (07): : 111 - 120
  • [2] Test of a novel self-centering brace using SMA slip friction damper
    Qiu, Canxing
    Yang, Yongbo
    Liu, Jiawang
    Jiang, Tianyuan
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2023, 204
  • [3] An Experimental Study of an SMA-Based Self-Centering Damper
    Ma, Hongwei
    Xu, Jiaxin
    Li, Shaofeng
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2022, 22 (02) : 610 - 621
  • [4] An Experimental Study of an SMA-Based Self-Centering Damper
    Hongwei Ma
    Jiaxin Xu
    Shaofeng Li
    International Journal of Steel Structures, 2022, 22 : 610 - 621
  • [5] MODELING OF AN SMA-BASED SELF-CENTERING DAMPER AND ITS CONTROL PERFORMANCE ANALYSIS
    Ma, Hong-Wei
    Yam, Michael C. H.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON TALL BUILDINGS, 2010, : 607 - 614
  • [6] Research on mechanical behavior of a self-centering brace using SMA slip friction damper
    Qiu C.
    Yang Y.
    Liu J.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2024, 45 (01): : 139 - 150
  • [7] Seismic performance of an innovative self-centering and repairable connection with SMA bolts in modular steel construction
    Deng, En-Feng
    Du, You-Peng
    Gao, Jun-Dong
    Zhang, Zhe
    Wang, Yan-Bo
    THIN-WALLED STRUCTURES, 2024, 205
  • [8] Effect of Loading Rate and Initial Strain on Seismic Performance of an Innovative Self-Centering SMA Brace
    Jia, Yigang
    Zhang, Bo
    Zeng, Sizhi
    Tang, Fenghua
    Hu, Shujun
    Chen, Wenping
    MATERIALS, 2022, 15 (03)
  • [9] Review on self-centering damper for seismic resilient building structures
    Xu, Gang
    Guo, Tong
    Li, Aiqun
    Wang, Shiyuan
    Zhang, Ruijun
    Zhu, Ruizhao
    Xu, Jun
    STRUCTURES, 2023, 54 : 58 - 77
  • [10] Seismic performance of self-centering glulam frame with friction damper
    Ding, Yi
    Zhou, Zhen
    Huang, Linjie
    Si, Yi
    ENGINEERING STRUCTURES, 2021, 245