NmeCas9 is an intrinsically high-fidelity genome-editing platform

被引:78
|
作者
Amrani, Nadia [1 ]
Gao, Xin D. [1 ]
Liu, Pengpeng [3 ,4 ]
Edraki, Alireza [1 ]
Mir, Aamir [1 ]
Ibraheim, Raed [1 ]
Gupta, Ankit [3 ,8 ]
Sasaki, Kanae E. [1 ,9 ]
Wu, Tong [3 ]
Donohoue, Paul D. [6 ]
Settle, Alexander H. [6 ,10 ]
Lied, Alexandra M. [6 ]
McGovern, Kyle [6 ,7 ]
Fuller, Chris K. [6 ]
Cameron, Peter [6 ]
Fazzio, Thomas G. [2 ,3 ]
Zhu, Lihua Julie [2 ,3 ,5 ]
Wolfe, Scot A. [3 ,4 ]
Sontheimer, Erik J. [1 ,2 ]
机构
[1] Univ Massachusetts, Med Sch, RNA Therapeut Inst, 368 Plantat St, Worcester, MA 01605 USA
[2] Univ Massachusetts, Med Sch, Program Mol Med, 368 Plantat St, Worcester, MA 01605 USA
[3] Univ Massachusetts, Med Sch, Dept Mol Cell & Canc Biol, 368 Plantat St, Worcester, MA 01605 USA
[4] Univ Massachusetts, Med Sch, Dept Biochem & Mol Pharmacol, 368 Plantat St, Worcester, MA 01605 USA
[5] Univ Massachusetts, Med Sch, Program Bioinformat & Integrat Biol, 368 Plantat St, Worcester, MA 01605 USA
[6] Caribou Biosci Inc, 2929 7th St,Suite 105, Berkeley, CA 94710 USA
[7] Sangamo Therapeut Inc, Richmond, CA USA
[8] Bluebird Bio, Cambridge, MA USA
[9] Massachusetts Gen Hosp, Mol Pathol Unit, Charlestown, MA USA
[10] Mem Sloan Kettering Canc Ctr, New York, NY USA
来源
GENOME BIOLOGY | 2018年 / 19卷
关键词
Cas9; CRISPR; sgRNA; Protospacer adjacent motif; Off-target; Neisseria meningitidis; CRISPR-CAS SYSTEMS; DNA CLEAVAGE; HUMAN-CELLS; ANTI-CRISPR; GUIDE RNA; DUAL-RNA; R LOOPS; NUCLEASES; COMPLEX; SPECIFICITY;
D O I
10.1186/s13059-018-1591-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wildtype SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs are considerably smaller and therefore better suited for viral delivery. Results: Here we show that wildtype NmeCas9, when programmed with guide sequences of the natural length of 24 nucleotides, exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5'-N(4)GATT-3'), for NmeCas9 genome editing in human cells. Conclusions: Our results show that NmeCas9 is a naturally high-fidelity genome-editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] High-Fidelity Genome Editing of Therapeutic CAR-T Cells Using a Novel Clo51-dCas9 (NextGEN™) CRISPR System
    Wang, Xinxin
    Li, Xianghong
    Tan, Yening
    Tong, Min
    Barnett, Burton E.
    Rengarajan, Srinivas
    Codde, Rebecca
    Ostertag, Eric M.
    Shedlock, Devon J.
    MOLECULAR THERAPY, 2017, 25 (05) : 81 - 82
  • [22] Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases
    Dingbo Zhang
    Huawei Zhang
    Tingdong Li
    Kunling Chen
    Jin-Long Qiu
    Caixia Gao
    Genome Biology, 18
  • [23] Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases
    Zhang, Dingbo
    Zhang, Huawei
    Li, Tingdong
    Chen, Kunling
    Qiu, Jin-Long
    Gao, Caixia
    GENOME BIOLOGY, 2017, 18
  • [24] Resistance of Mouse Hematopoietic Stem and Progenitor Cells to the Genome-Editing with Cas9
    Byambaa, Suvd
    Uosaki, Hideki
    Hara, Hiromasa
    Abe, Tomoyuki
    Nagao, Yasumitsu
    Nureki, Osamu
    Ohmori, Tsukasa
    Hanazono, Yutaka
    MOLECULAR THERAPY, 2017, 25 (05) : 93 - 93
  • [25] Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae
    Sharma, Amit K.
    Nymark, Marianne
    Flo, Snorre
    Sparstad, Torfinn
    Bones, Atle M.
    Winge, Per
    PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (08) : 1658 - 1669
  • [26] High Fidelity Genome Editing with a Novel Mutant HIF1 Cas9
    Vakulskas, Chris
    Collingwood, Michael
    Behlke, Mark
    MOLECULAR THERAPY, 2018, 26 (05) : 92 - 92
  • [27] Application progress of CRISPR/Cas9 genome-editing technology in edible fungi
    Zhang, Yan
    Chen, Shutong
    Yang, Long
    Zhang, Qiang
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [28] A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants
    Kaya, Hidetaka
    Ishibashi, Kazuhiro
    Toki, Seiichi
    PLANT AND CELL PHYSIOLOGY, 2017, 58 (04) : 643 - 649
  • [29] Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics
    Givens, Brittany E.
    Naguib, Youssef W.
    Geary, Sean M.
    Devor, Eric J.
    Salem, Aliasger K.
    AAPS JOURNAL, 2018, 20 (06):
  • [30] SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power
    Zhang, Dangquan
    Zhang, Baohong
    TRENDS IN GENETICS, 2020, 36 (08) : 546 - 548