Descriptive complexity of computable sequences revisited

被引:0
|
作者
Vereshchagin, Nikolay [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] HSE Univ, Moscow, Russia
关键词
Kolmogorov complexity; Limit complexity; Computable sequences;
D O I
10.1016/j.tcs.2020.01.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to answer two questions left open in Durand et al. (2001) [2]. Namely, we consider the following two complexities of an infinite computable 0-1-sequence alpha: C-0' (alpha), defined as the minimal length of a program with oracle 0' that prints alpha, and M-infinity(alpha), defined as lim sup C(alpha(1:n)vertical bar n), where alpha(1:n) denotes the length-n prefix of alpha and C(x vertical bar y) stands for conditional Kolmogorov complexity. We show that C-0'(alpha) <= M-infinity (alpha)+ 0(1) and M-infinity (alpha) is not bounded by any computable function of C-0' (alpha), even on the domain of computable sequences. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:531 / 537
页数:7
相关论文
共 50 条
  • [31] Complexity revisited
    Peter Godfrey-Smith
    Biology & Philosophy, 2017, 32 : 467 - 479
  • [32] Complexity revisited
    Godfrey-Smith, Peter
    BIOLOGY & PHILOSOPHY, 2017, 32 (03) : 467 - 479
  • [33] Descriptive and parameterized complexity
    Grohe, M
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 1999, 1683 : 14 - 31
  • [34] The complexity of central series in nilpotent computable groups
    Csima, Barbara F.
    Solomon, Reed
    ANNALS OF PURE AND APPLIED LOGIC, 2011, 162 (08) : 667 - 678
  • [35] ON THE COMPLEXITY OF THE SUCCESSIVITY RELATION IN COMPUTABLE LINEAR ORDERINGS
    Downey, Rod
    Lempp, Steffen
    Wu, Guohua
    JOURNAL OF MATHEMATICAL LOGIC, 2010, 10 (1-2) : 83 - 99
  • [36] The Complexity of Primes in Computable Unique Factorization Domains
    Dzhafarov, Damir D.
    Mileti, Joseph R.
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2018, 59 (02) : 139 - 156
  • [37] Computable irrational numbers with representations of surprising complexity
    Georgiev, Ivan
    Kristiansen, Lars
    Stephan, Frank
    ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (02)
  • [38] Applications of Kolmogorov complexity to computable model theory
    Khoussainov, Bakhadyr
    Semukhin, Pavel
    Stephan, Frank
    JOURNAL OF SYMBOLIC LOGIC, 2007, 72 (03) : 1041 - 1054
  • [39] CLASSES OF COMPLEXITY AND CLASSES OF SIGNALING COMPUTABLE FUNCTIONS
    MATROSOV, VL
    DOKLADY AKADEMII NAUK SSSR, 1976, 226 (03): : 513 - 515
  • [40] Randomness for computable measures and initial segment complexity
    Hoelzl, Rupert
    Porter, Christopher P.
    ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (04) : 860 - 886