The purpose of this paper is to answer two questions left open in Durand et al. (2001) [2]. Namely, we consider the following two complexities of an infinite computable 0-1-sequence alpha: C-0' (alpha), defined as the minimal length of a program with oracle 0' that prints alpha, and M-infinity(alpha), defined as lim sup C(alpha(1:n)vertical bar n), where alpha(1:n) denotes the length-n prefix of alpha and C(x vertical bar y) stands for conditional Kolmogorov complexity. We show that C-0'(alpha) <= M-infinity (alpha)+ 0(1) and M-infinity (alpha) is not bounded by any computable function of C-0' (alpha), even on the domain of computable sequences. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Victoria Univ Wellington, Sch Math Stat & Operat Res, Wellington, New ZealandVictoria Univ Wellington, Sch Math Stat & Operat Res, Wellington, New Zealand
Downey, Rod
Lempp, Steffen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Math, Madison, WI 53706 USAVictoria Univ Wellington, Sch Math Stat & Operat Res, Wellington, New Zealand
Lempp, Steffen
Wu, Guohua
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, SingaporeVictoria Univ Wellington, Sch Math Stat & Operat Res, Wellington, New Zealand
机构:
Univ Bundeswehr Munchen, Fac Comp Sci, Inst 1, Werner Heisenberg Weg 39, D-85577 Neubiberg, GermanyUniv Bundeswehr Munchen, Fac Comp Sci, Inst 1, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany
Hoelzl, Rupert
Porter, Christopher P.
论文数: 0引用数: 0
h-index: 0
机构:
Drake Univ, Dept Math & Comp Sci, Des Moines, IA 50311 USAUniv Bundeswehr Munchen, Fac Comp Sci, Inst 1, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany