Historic Behaviour for Random Expanding Maps on the Circle

被引:2
|
作者
Nakano, Yushi [1 ,2 ]
机构
[1] Osaka City Univ, Osaka, Japan
[2] Kitami Inst Technol, Fac Engn, Kitami, Hokkaido 0908507, Japan
关键词
Historic behaviour; Random expanding maps; AVERAGES;
D O I
10.3836/tjm/1502179221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
F. Takens constructed a residual subset of the state space consisting of initial points with historic behaviour for expanding maps on the circle. We prove that this statistical property of expanding maps on the circle is preserved under small random perturbations. The proof is given by establishing a random Markov partition, which follows from a random version of Shub's Theorem on topological conjugacy with the folding maps.
引用
收藏
页码:165 / 184
页数:20
相关论文
共 50 条
  • [31] A note on circle maps driven by strongly expanding endomorphisms on T
    Bjerklov, Kristian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2018, 33 (02): : 361 - 368
  • [32] ON HAUSDORFF DIMENSION OF INVARIANT-SETS FOR EXPANDING MAPS OF A CIRCLE
    URBANSKI, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 : 295 - 309
  • [33] On stochastic stability of expanding circle maps with neutral fixed points
    Shen, Weixiao
    van Strien, Sebastian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (03): : 423 - 452
  • [34] Optimal transport and dynamics of expanding circle maps acting on measures
    Kloeckner, Benoit
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 529 - 548
  • [35] Lower bounds for the Ruelle spectrum of analytic expanding circle maps
    Bandtlow, Oscar F.
    Naud, Frederic
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 289 - 310
  • [36] Cramer distance and discretisations of circle expanding maps I: theory
    Guiheneuf, Pierre-Antoine
    Monge, Maurizio
    NONLINEARITY, 2023, 36 (09) : 4810 - 4843
  • [37] Mean-Field Coupling of Identical Expanding Circle Maps
    Fanni Sélley
    Péter Bálint
    Journal of Statistical Physics, 2016, 164 : 858 - 889
  • [38] Mean-Field Coupling of Identical Expanding Circle Maps
    Selley, Fanni
    Balint, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (04) : 858 - 889
  • [39] Lyapunov optimizing measures for C1 expanding maps of the circle
    Jenkinson, Oliver
    Morris, Ian D.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 1849 - 1860
  • [40] Analytic skew products of quadratic polynomials over circle expanding maps
    Huang, Wen
    Shen, Weixiao
    NONLINEARITY, 2013, 26 (02) : 389 - 404