On α-total domination in graphs

被引:6
|
作者
Henning, Michael A. [1 ]
Rad, Nader Jafari [2 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
基金
新加坡国家研究基金会;
关键词
Domination; Total domination; alpha-domination; SMALL TRANSVERSALS; HYPERGRAPHS; NUMBER;
D O I
10.1016/j.dam.2011.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph with no isolated vertex. A subset of vertices S is a total dominating set if every vertex of G is adjacent to some vertex of S. For some alpha with 0 < alpha <= 1, a total dominating set S in G is an alpha-total dominating set if for every vertex nu is an element of V \ S, vertical bar N(upsilon) boolean AND S vertical bar >= alpha vertical bar N(upsilon)vertical bar. The minimum cardinality of an alpha-total dominating set of G is called the alpha-total domination number of G. In this paper, we study alpha-total domination in graphs. We obtain several results and bounds for the alpha-total domination number of a graph G. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1143 / 1151
页数:9
相关论文
共 50 条
  • [31] TOTAL DOMINATION IN BLOCK GRAPHS
    CHANG, GJ
    OPERATIONS RESEARCH LETTERS, 1989, 8 (01) : 53 - 57
  • [32] Secure total domination in graphs
    Benecke, S.
    Cockayne, E. J.
    Mynhardt, C. M.
    UTILITAS MATHEMATICA, 2007, 74 : 247 - 259
  • [33] On total restrained domination in graphs
    Ma, DX
    Chen, XG
    Sun, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (01) : 165 - 173
  • [34] On total restrained domination in graphs
    De-Xiang Ma
    Xue-Gang Chen
    Liang Sun
    Czechoslovak Mathematical Journal, 2005, 55 : 165 - 173
  • [35] On Majority Total Domination in Graphs
    Muthuselvi, A.
    Arumugam, S.
    UTILITAS MATHEMATICA, 2019, 113 : 159 - 167
  • [36] Inverse total domination in graphs
    Kulli, V. R.
    Iyer, R. R.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05): : 613 - 620
  • [37] Minus total domination in graphs
    Xing, Hua-Ming
    Liu, Hai-Long
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 861 - 870
  • [38] Disjunctive total domination in graphs
    Michael A. Henning
    Viroshan Naicker
    Journal of Combinatorial Optimization, 2016, 31 : 1090 - 1110
  • [39] Complementary total domination in graphs
    Chaluvaraju, B.
    Soner, N. D.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (04): : 505 - 516
  • [40] On Majority Total Domination in Graphs
    Muthuselvi, A.
    Arumugam, S.
    UTILITAS MATHEMATICA, 2020, 114 : 239 - 247