Levi components of parabolic subalgebras of finitary Lie algebras

被引:0
|
作者
Dan-Cohen, Elizabeth [1 ]
Penkov, Ivan [1 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
来源
REPRESENTATION THEORY AND MATHEMATICAL PHYSICS | 2011年 / 557卷
关键词
simple finitary Lie algebra; parabolic subalgebra; Levi component; CARTAN SUBALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize locally semisimple subalgebras l of sl(infinity), so(infinity), and sp(infinity) which are Levi components of parabolic subalgebras. Given I, we describe the parabolic subalgebras p such that l is a Levi component of p. We also prove that not every maximal locally semisimple subalgebra of a finitary Lie algebra is a Levi component. When the set of self-normalizing parabolic subalgebras p with fixed Levi component l is finite, we prove an estimate on its cardinality. We consider various examples which highlight the differences from the case of parabolic subalgebras of finite-dimensional simple Lie algebras.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 50 条
  • [41] Inner ideals of finitary simple Lie algebras
    López, AF
    García, E
    Lozano, MG
    JOURNAL OF LIE THEORY, 2006, 16 (01) : 97 - 114
  • [42] Wide Subalgebras of Semisimple Lie Algebras
    Dmitri I. Panyushev
    Algebras and Representation Theory, 2014, 17 : 931 - 944
  • [43] Computing Cartan subalgebras of lie algebras
    Technical Univ of Eindhoven, Eindhoven, Netherlands
    Appl Algebra Eng Commun Comput, 5 (339-349):
  • [44] Wide Subalgebras of Semisimple Lie Algebras
    Panyushev, Dmitri I.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 931 - 944
  • [45] THE THEOREM OF LIE AND HYPERPLANE SUBALGEBRAS OF LIE-ALGEBRAS
    POGUNTKE, D
    GEOMETRIAE DEDICATA, 1992, 43 (01) : 83 - 91
  • [46] Nilpotent subalgebras of semisimple Lie algebras
    Levy, Paul
    McNinch, George
    Testerman, Donna M.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 477 - 482
  • [48] Two generator subalgebras of Lie algebras
    Bowman, Kevin
    Towers, David A.
    Varea, Vicente R.
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (05): : 429 - 438
  • [49] Computing Cartan subalgebras of Lie algebras
    DeGraaf, W
    Ivanyos, G
    Ronyai, L
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) : 339 - 349
  • [50] On special subalgebras of derivations of Lie algebras
    Sheikh-Mohseni, S.
    Saeedi, F.
    Asl, M. Badrkhani
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (02)