Optimal equilibria in the non-cooperative game associated with cost spanning tree problems

被引:13
|
作者
Bergantiños, G
Lorenzo, L
机构
[1] Univ Vigo, Fac Econ, Vigo 36200, Pontevedra, Spain
[2] Univ Vigo, Dept Estatist, Vigo 36200, Pontevedra, Spain
关键词
cost spanning tree problem; optimality;
D O I
10.1007/s10479-005-2248-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the Pareto optimal equilibria payoffs of the non-cooperative game associated with the cost spanning tree problem. We give two characterisations of these payoffs: one based on the tree they induce and another based on the strategies played by agents. Moreover, an algorithm for computing all these payoffs is provided.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [31] Non-cooperative game theory in biology and cooperative reasoning in humans
    Kabalak, Alihan
    Smirnova, Elena
    Jost, Juergen
    [J]. THEORY IN BIOSCIENCES, 2015, 134 (1-2) : 17 - 46
  • [32] Non-cooperative game theory in biology and cooperative reasoning in humans
    Alihan Kabalak
    Elena Smirnova
    Jürgen Jost
    [J]. Theory in Biosciences, 2015, 134 : 17 - 46
  • [33] A non-cooperative approach to bankruptcy problems
    Garcia-Jurado, Ignacio
    Gonzalez-Diaz, Julio
    Villar, Antonio
    [J]. SPANISH ECONOMIC REVIEW, 2006, 8 (03) : 189 - 197
  • [34] Socially Optimal Coexistence of Wireless Body Area Networks Enabled by a Non-Cooperative Game
    Dong, Jie
    Smith, David B.
    Hanlen, Leif W.
    [J]. ACM TRANSACTIONS ON SENSOR NETWORKS, 2016, 12 (04)
  • [35] STABILITY OF EQUILIBRIA FOR MIXED EXTENSIONS OF NON-COOPERATIVE GAMES
    MALAFEEV, OA
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1984, (01): : 17 - 22
  • [36] Optimal planning method of independent electricity retail company based on non-cooperative game
    Lin W.
    Hu Z.
    Xie S.
    Ning Y.
    Yi C.
    Zheng Y.
    [J]. Hu, Zhijian (zhijian_hu@163.com), 1600, Electric Power Automation Equipment Press (40): : 154 - 161
  • [37] Non-cooperative game-based optimal operation method of multiple energy hubs
    Wei C.
    Xu X.
    Wang G.
    Zhang Y.
    Pan H.
    Huang X.
    [J]. Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2020, 40 (11): : 48 - 53and60
  • [38] Optimal power allocation strategy in ultra-dense networks with non-cooperative game
    Zhao D.
    Wang G.
    Zheng L.
    Zhou R.
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2020, 52 (05): : 30 - 34
  • [39] COST ALLOCATION FOR A SPANNING TREE - GAME THEORETIC APPROACH
    BIRD, CG
    [J]. NETWORKS, 1976, 6 (04) : 335 - 350
  • [40] NON-COOPERATIVE EQUILIBRIA IN TIME-DEPENDENT SUPERGAMES
    FRIEDMAN, JW
    [J]. ECONOMETRICA, 1974, 42 (02) : 221 - 237