HIV-1 Protease and Reverse Transcriptase Control the Architecture of Their Nucleocapsid Partner

被引:42
|
作者
Mirambeau, Gilles [1 ,2 ]
Lyonnais, Sebastien [1 ]
Coulaud, Dominique [1 ]
Hameau, Laurence [1 ]
Lafosse, Sophie [1 ]
Jeusset, Josette [1 ]
Borde, Isabelle [3 ]
Reboud-Ravaux, Michele [4 ]
Restle, Tobias [5 ,6 ]
Gorelick, Robert J. [7 ]
Le Cam, Eric [1 ]
机构
[1] Univ Paris 11, Inst Cancerol Gustave Roussy, CNRS, UMR Interact Mol & Canc 8126,Lab Microscopie Mol, Villejuif, France
[2] Univ Paris 06, Div Biochim, UFR Sci Vie, Paris, France
[3] Univ Paris 06, Lab Biol & Multimedia, Paris, France
[4] Univ Paris 06, CNRS, Inst Jacques Monod, Lab Enzymol Mol & Fonct,FRE 2852, Paris, France
[5] Univ Klinikum Schleswig Holstein, Inst Mol Med, D-23538 Lubeck, Germany
[6] ZMSB, Lubeck, Germany
[7] NCI, AIDS Vaccine Program, Basic Res Program, Sci Applicat Int Corp Frederick, Frederick, MD 21701 USA
来源
PLOS ONE | 2007年 / 2卷 / 08期
基金
美国国家卫生研究院;
关键词
D O I
10.1371/journal.pone.0000669
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [41] An overview on HIV-1 reverse transcriptase inhibitors
    Ravichandran, Shalini
    Veerasamy, Ravichandran
    Raman, Saraswathi
    Krishnan, Palamadai Neelakandam
    Agrawal, Ram Kishore
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2008, 3 (04) : 171 - 187
  • [42] FIDELITY OF HIV-1 REVERSE-TRANSCRIPTASE
    PRESTON, BD
    POIESZ, BJ
    LOEB, LA
    SCIENCE, 1988, 242 (4882) : 1168 - 1171
  • [43] Effect of the HIV-1 nucleocapsid protein on reverse transcriptase pause sites revealed by single molecule microscopy
    Jouonang, A.
    Przybilla, F.
    Godet, J.
    Sharma, K. K.
    Restle, T.
    de Rocquigny, H.
    Darlix, J. -L.
    Kenfack, C.
    Didier, P.
    Mely, Y.
    SINGLE MOLECULE SPECTROSCOPY AND SUPERRESOLUTION IMAGING VI, 2013, 8590
  • [44] Discovery of potential dual-target prodrugs of HIV-1 reverse transcriptase and nucleocapsid protein 7
    Sun, Songkai
    Huang, Boshi
    Li, Zhuo
    Wang, Zhao
    Sun, Lin
    Gao, Ping
    Kang, Dongwei
    Chen, Chin-Ho
    Lee, Kuo-Hsiung
    Daelemans, Dirk
    De Clercq, Erik
    Pannecouque, Christophe
    Zhan, Peng
    Liu, Xinyong
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2020, 30 (16)
  • [45] ENHANCEMENT OF HIV-1 PROTEINASE ACTIVITY BY HIV-1 REVERSE-TRANSCRIPTASE
    GOOBARLARSSON, L
    LUUKKONEN, BGM
    UNGE, T
    SCHWARTZ, S
    UTTER, G
    STRANDBERG, B
    OBERG, B
    VIROLOGY, 1995, 206 (01) : 387 - 394
  • [46] Murine leukemia virus reverse transcriptase:: Structural comparison with HIV-1 reverse transcriptase
    Cote, Marie L.
    Roth, Monica J.
    VIRUS RESEARCH, 2008, 134 (1-2) : 186 - 202
  • [47] Estimating the Fitness Cost of Escape from HLA Presentation in HIV-1 Protease and Reverse Transcriptase
    Mostowy, Rafal
    Kouyos, Roger D.
    Hoof, Ilka
    Hinkley, Trevor
    Haddad, Mojgan
    Whitcomb, Jeannette M.
    Petropoulos, Christos J.
    Kesmir, Can
    Bonhoeffer, Sebastian
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
  • [48] HIV-1 protease inhibits its homologous reverse transcriptase by protein-protein interaction
    Bottcher, M
    Grosse, F
    NUCLEIC ACIDS RESEARCH, 1997, 25 (09) : 1709 - 1714
  • [49] Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava
    Ahn, MJ
    Yoon, KD
    Min, SY
    Lee, JS
    Kim, JH
    Kim, TG
    Kim, SH
    Kim, NG
    Huh, H
    Kim, J
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2004, 27 (04) : 544 - 547
  • [50] Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors
    Hecht, FM
    Grant, RM
    Petropoulos, CJ
    Dillon, B
    Chesney, MA
    Tian, H
    Hellmann, NS
    Bandrapalli, NI
    Digilio, L
    Branson, B
    Kahn, JO
    NEW ENGLAND JOURNAL OF MEDICINE, 1998, 339 (05): : 307 - 311