ALTERNATING UNITS AS FREE FACTORS IN THE GROUP OF UNITS OF INTEGRAL GROUP RINGS

被引:3
|
作者
Goncalves, Jairo Z. [1 ]
Veloso, Paula M. [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
integral group rings; free groups; units; BICYCLIC UNITS; FREE SUBGROUPS;
D O I
10.1017/S0013091510000428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group of odd order that contains a non-central element x whose order is either a prime p >= 5 or 3(l), with l >= 2. Then, in U(ZG), the group of units of ZG, we can find an alternating unit u based on x, and another unit v, which can be either a bicyclic or an alternating unit, such that for all sufficiently large integers m we have that < u(m), v(m)> = < u(m)> * < v(m)> congruent to Z * Z.
引用
收藏
页码:695 / 709
页数:15
相关论文
共 50 条