On the Poisson-Lie T-plurality of boundary conditions

被引:6
|
作者
Albertsson, Cecilia [1 ]
Hlavaty, Ladislav [2 ]
Snobl, Libor [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic
基金
日本学术振兴会;
关键词
D O I
10.1063/1.2832622
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conditions for the gluing matrix defining consistent boundary conditions of two-dimensional nonlinear sigma-models are analyzed and reformulated. Transformation properties of the right-invariant fields under the Poisson-Lie T-plurality are used to derive a formula for the transformation of the boundary conditions. Examples of transformation of D-branes in two and three dimensions are presented. We investigate obstacles arising in this procedure and propose possible solutions. (C) 2008 American Institute of Physics.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Poisson-Lie T-duality and supersymmetry
    Sfetsos, K
    NUCLEAR PHYSICS B, 1997, : 302 - 309
  • [22] T-folds as Poisson-Lie plurals
    Hlavaty, Ladislav
    Petr, Ivo
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [23] SU(2) Poisson-Lie T duality
    Lledo, MA
    Varadarajan, VS
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 45 (03) : 247 - 257
  • [24] POISSON-LIE STRUCTURE ON THE TANGENT BUNDLE OF A POISSON-LIE GROUP, AND POISSON ACTION LIFTING
    Boumaiza, Mohamed
    Zaalani, Nadhem
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2005, 4 : 1 - 18
  • [25] Poisson-Lie T-duality for quasitriangular Lie bialgebras
    Beggs, EJ
    Majid, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) : 455 - 488
  • [26] Poisson-Lie T-duality as a boundary phenomenon of Chern-Simons theory
    Severa, Pavol
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [27] Poisson-Lie T-duality as a boundary phenomenon of Chern-Simons theory
    Pavol Ševera
    Journal of High Energy Physics, 2016
  • [28] LIE SUPERBIALGEBRAS AND POISSON-LIE SUPERGROUPS
    ANDRUSKIEWITSCH, N
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1993, 63 : 147 - 163
  • [29] POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS
    Montani, H.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2008, 49 (01): : 71 - 82
  • [30] Quantum equivalence in Poisson-Lie T-duality
    Sfetsos, Konstadinos
    Siampos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):